Abstract:
A fuel injector is provided and includes a first tube, having first and second opposing ends, which is supplied with fuel, and one or more second tubes disposed within the first tube, each of the one or more second tubes being supplied with air and having sidewalls defining injection holes through which the fuel enters the one or more second tubes to mix with the air, and an outlet end of the sidewalls corresponding to the second end of the first tube.
Abstract:
A method for reducing the amount of carbon monoxide and oxygen emissions in an oxyfuel hydrocarbon combustion system, comprising the steps of feeding defined amounts of hydrocarbon fuel and an oxidizer (e.g., air) to one or more combustors in the engine and igniting the mixture to form a first combustor exhaust stream; determining the amount of carbon monoxide present at the head end of a combustor in the initial combustor exhaust stream; identifying one or more target locations within the combustor at a point downstream from the first exhaust stream for injecting free hydrogen and a supplemental oxidizer; injecting hydrogen and the supplemental oxidizer into the combustor at specified downstream locations based on the amount of detected carbon monoxide; and injecting a diluent (e.g., CO2) into the combustor at a point further downstream in the combustor exhaust to control the exhaust temperature.
Abstract:
A fuel injector is provided and includes a first tube, having first and second opposing ends, which is supplied with fuel, and one or more second tubes disposed within the first tube, each of the one or more second tubes being supplied with air and having sidewalls defining injection holes through which the fuel enters the one or more second tubes to mix with the air, and an outlet end of the sidewalls corresponding to the second end of the first tube.