Abstract:
Techniques for performing admission control based on quality-of-service (QoS) performance in a wireless communication network are described. QoS performance (e.g., delay or throughput performance) of admitted data flows may be determined. Whether to admit or reject a new data flow may then be determined based on the QoS performance of the admitted data flows. The admitted and new data flows may have delay bounds. The QoS performance of the admitted data flows may be given by a measured sector delay, which may be determined based on actual delays of packets. A measured flow delay for each admitted data flow may be determined based on delays of packets for that flow. The measured sector delay may then be determined based on the measured flow delays for all admitted data flows. The new data flow may be admitted if the measured sector delay is less than a delay threshold.
Abstract:
Techniques for performing admission control based on quality-of-service (QoS) performance in a wireless communication network are described. QoS performance (e.g., delay or throughput performance) of admitted data flows may be determined. Whether to admit or reject a new data flow may then be determined based on the QoS performance of the admitted data flows. The admitted and new data flows may have delay bounds. The QoS performance of the admitted data flows may be given by a measured sector delay, which may be determined based on actual delays of packets. A measured flow delay for each admitted data flow may be determined based on delays of packets for that flow. The measured sector delay may then be determined based on the measured flow delays for all admitted data flows. The new data flow may be admitted if the measured sector delay is less than a delay threshold.