Abstract:
Systems and methods for communicating over multiple carriers are described herein. A predetermined event triggers the generation of scheduling information for two or more of the carriers. The predetermined event may comprise expiration of a timer set for at least one of the two or more carriers, storing data in a buffer having a higher transmission priority than data previously stored in the buffer, or changing at least one of the two or more carriers from being served by a first cell to being served by a second cell.
Abstract:
A method and apparatus for wireless communication may provide for mobility in a Multi-Point HSDPA network capable of downlink aggregation. Some aspects of the disclosure provide modified mobility events utilized for altering the Active Set for a UE. Here, the addition of a cell to the Active Set can coincide with making that cell a secondary serving cell. Further, the deletion of a secondary serving cell from the Active Set can coincide with switching off the Multi-Point HSDPA mode. Still further, a modified mobility event for an HSDPA serving cell change can be utilized to swap a primary serving cell and a secondary serving cell.
Abstract:
A method of wireless communication in a dual subscriber identification module (SIM) terminal includes transmitting a first synchronization message from a first module associated with a first SIM. The method also includes receiving a first acknowledgment (ACK) message on a fast physical access channel (FPACH) in response to the first synchronization message. The method further includes sharing timing information included in the first ACK between the first module and a second module.
Abstract:
A wireless communication system transmits in a High Speed Downlink Packet Access (HSDPA) by having a Radio Network Controller (RNC) assign portions of data to a first serving cell and a second serving cell for transmitting to a user equipment. The first serving cell transmits data on a first downlink carrier to the user equipment. The second serving cell, which is independent from the first serving cell, transmits data on a second downlink carrier to the user equipment. In an optional aspect, the RNC receives a measurement report from the user equipment on a first uplink carrier via at least one of the first serving cell and the second serving cell.
Abstract:
A wireless communications method is provided. The method includes analyzing one or more channel conditions from a wireless communication and automatically adjusting a frequency tracking loop gain or a time tracking loop gain in view of the channel conditions.
Abstract:
A communication device configured for dynamic switching between Multiple-Input and Multiple-Output (MIMO) and Dual-Cell High Speed Downlink Packet Access (DC HSDPA) is disclosed. The communication device includes a processor and instructions stored in memory. The communication device begins a connection setup for one or more wireless communication devices, obtains MIMO and DC HSDPA capabilities for the one or more wireless communication devices and optimizes the coexistence of MIMO and DC HSDPA.
Abstract:
Techniques for supporting data transmission on multiple carriers in a wireless communication system are described. A user equipment (UE) may determine available transmit power for data transmission on multiple carriers. The UE may distribute the available transmit power to multiple carriers (e.g., using uniform power distribution, greedy filling, water filling, etc.) to obtain allocated transmit power for data for each carrier. The UE may send at least one resource request with information indicative of the allocated transmit power for each of the multiple carriers to a Node B. The UE may receive at least one resource grant with information indicative of granted transmit power for each of at least one carrier, which may be all or a subset of the multiple carriers. The UE may send data on the at least one carrier and may limit its transmit power for each carrier to the granted transmit power for that carrier.
Abstract:
Systems and methodologies are described that facilitate dynamic load balancing in a communications network. In particular, one or more mobile devices can send random access preambles on an uplink frequency paired to a downlink frequency employed to connect the one or more mobile devices to a base station. The base station can determine if an uplink frequency load imbalance exists based upon the random access preambles. The base station can transmit an indicator on an acquisition indicator channel to at least one mobile device wherein the indicator includes a command to transition to a new uplink frequency. The mobile device can switch uplink frequencies in response to the command.
Abstract:
A base station (e.g., a Node B in a Multi-Point HSDPA network) calculates an amount of data to request from a network node (e.g., a radio network controller or RNC). As a part of the algorithm utilized, a length of a queue at the Node B for buffering the flow may be dynamically adjusted in an effort to optimize the trade-off between buffer underrun and skew. Further, a network node (e.g., the RNC) responds to Node B flow control requests. Here, the RNC may determine the amount of data to send to the Node B in response to the flow control message from the Node B, and may send the data to the Node B. In various aspects of the present disclosure involving a Multi-Point HSDPA system, the flow control algorithm at the RNC coordinates packet flow to the primary serving cell and the secondary serving cell for the UE.
Abstract:
A method and apparatus for enhancing uplink operations in a CDMA system is provided. The method may include receiving a rate control value and a transmit power value from a node B, wherein the rate control value is determined through uplink scheduling by the node B, and wherein the transmit power value is selected by the node B to maintain a signal to interference plus noise (SINR) metric within a threshold for a pilot channel, transmitting control channel information at a first power level determined from the transmit power value, and using a first average power tracking unit to generate the first selected transmit power and transmitting data channel information at a second power level determined from both the rate control value and the transmit power value.