Abstract:
An adaptive method is provided for applying chirp to an optical signal traversing through an optical network. The adaptive method comprises: applying chirp to an optical data signal at a transmitter in the optical network; transmitting the optical data signal through the optical network, the optical data signal having error detection data embedded therein; determining an error rate for the optical data signal at an egress point of the optical network, where the error rate is based on the error detection data embedded in the optical data signal; transmitting the error rate for the optical data signal to the transmitter; and adjusting the chirp being applied to the optical data signal at the transmitter based on the error rate for the optical data signal.
Abstract:
An automatic optical power management system for use with an optical communications system includes a light source residing in a first circuit pack and adapted to emit light at a nominal power level only absent receipt of an indicator signifying a loss of signal resulting from a fiber discontinuity relating to the first optical fiber, wherein the nominal power level is of sufficient magnitude to violate laser safety guidelines in the event of the fiber discontinuity. A redundant detection system includes a first optical detector residing in the first circuit pack, and a second optical detector residing in a second circuit pack that is optically adjacent to the first circuit. A redundant response system communicates an indicator signifying loss of signal from the first and second optical detectors to the light source upon detection of loss of signal by either detector.
Abstract:
An iterative process is used to set the phase prechirp of a WDM optical transport system to a system's optimal level that maximizes the signal quality. A signal degradation factor takes into account linear and non-linear effects along the optical path and is used as a receive end feedback signal to control the phase prechirp level at the transmitter site. By using the FEC corrected errors rate as the feedback signal, optimization of signal quality is performed even when the system is running error free. By using an adaptive phase prechirp transmitter, signal degradation compensation can be also performed on a per wavelength basis to compensate for the residual dispersion slope and to allow optimization of individual channels independently of the net link dispersion value.This method provides more flexibility when using optical switching in core networks, as it allows path optimization to new physical link connectivity, without requiring any change to the optical components such that, significant signal degradation tuning range for a WDM optical transport system is provided.
Abstract:
In accordance with the present invention, an improved method is provided for synchronizing a pulse stream with a data stream in an optical communications system. The improved method includes: generating an optical data signal for transmission through the optical communication system, where the data stream exhibits a duty cycle less than fifty percent and the optical data signal is formed from the pulse stream and the data stream; detecting an optical power level associated with the optical data signal; and synchronizing the pulse stream with the data stream based on the optical power level associated with the optical data signal. Specifically, the pulse stream is temporally aligned with the data stream when the average power of the optical data signal is maximized.
Abstract:
In an optical communication system, efficient use of a Mach-Zehnder modulator requires accurate knowledge of the AC halfwave voltage at the desired modulation frequency. At high modulation frequencies this can be difficult to measure directly. A method of accurately measuring the AC halfwave voltage of a Mach-Zehnder modulator is described. The Mach-Zehnder modulator is biased at the peak of the transfer function curve and a sinusoidal signal of known amplitude and the desired frequency of measurement is applied. The optical power is measured with and without the sinusoidal signal. The ratio of the two optical powers is used in the Mach-Zehnder transfer equation to calculate the AC halfwave voltage.