Abstract:
With a view to providing a bearing mechanism exhibiting a high leakage preventing effect for a liquid medium and an X-ray tube having such a bearing mechanism, the bearing mechanism includes a gap between a plain bearing and a shaft, with a liquid medium being present in the gap, the gap comprising at least three concentric annular gaps communicating in series with one another. The shaft has a pumping groove formed in an outer periphery surface thereof at a position facing the gap. The liquid medium is a liquid metal. The liquid metal is gallium or an alloy thereof.
Abstract:
A cooling assembly for an X-ray tube with a stationary body comprising a rotating body located at least around a part of the stationary body, and at least one coolant circuit with at least one coolant flowing through it. The coolant circuit is preferably interposed between the rotating body and the stationary body, with the coolant flowing between the rotating body and the stationary body.
Abstract:
A cooling assembly for an X-ray tube with a stationary body comprising a rotating body located at least around a part of the stationary body, and at least one coolant circuit with at least one coolant flowing through it. The coolant circuit is preferably interposed between the rotating body and the stationary body, with the coolant flowing between the rotating body and the stationary body.
Abstract:
A system and method for providing a sealing arrangement in an X-ray tube are provided. The X-ray tube includes a rotating portion having a plurality of ball bearings and a liquid metal within a housing having the ball bearings therein. The rotating portion is configured to rotate an anode. The X-ray tube further includes a sealing portion formed by a liquid metal vacuum interface configured in a radial direction to resist flow of liquid metal from the housing to a vacuum portion.
Abstract:
A system and method for providing a sealing arrangement in an X-ray tube are provided. The X-ray tube includes a rotating portion having a plurality of ball bearings and a liquid metal within a housing having the ball bearings therein. The rotating portion is configured to rotate an anode. The X-ray tube further includes a sealing portion formed by a liquid metal vacuum interface configured in a radial direction to resist flow of liquid metal from the housing to a vacuum portion.