Abstract:
The present invention relates to a multi-band noise reduction system for digital audio signals producing a noise reduced digital audio output signal from a digital audio signal. The digital audio signal comprises a target signal and a noise signal, i.e. a noisy digital audio signal. The multi-band noise reduction system operates on a plurality of sub-band signals derived from the digital audio signal and comprises a second or adaptive signal-to-noise ratio estimator which is configured for filtering a plurality of first signal-to-noise ratio estimates of the plurality of sub-band signals with respective time-varying low-pass filters to produce respective second signal-to-noise ratio estimates of the plurality of sub-band signals. A low-pass cut-off frequency of each of the time-varying low-pass filters is adaptable in accordance with a first signal-to-noise ratio estimate determined by a first signal-to-noise ratio estimator and/or the second signal-to-noise ratio estimate of the sub-band signal.
Abstract:
The present invention relates to a multi-band noise reduction system for digital audio signals producing a noise reduced digital audio output signal from a digital audio signal. The digital audio signal comprises a target signal and a noise signal, i.e. a noisy digital audio signal. The multi-band noise reduction system operates on a plurality of sub-band signals derived from the digital audio signal and comprises a second or adaptive signal-to-noise ratio estimator which is configured for filtering a plurality of first signal-to-noise ratio estimates of the plurality of sub-band signals with respective time-varying low-pass filters to produce respective second signal-to-noise ratio estimates of the plurality of sub-band signals. A low-pass cut-off frequency of each of the time-varying low-pass filters is adaptable in accordance with a first signal-to-noise ratio estimate determined by a first signal-to-noise ratio estimator and/or the second signal-to-noise ratio estimate of the sub-band signal.
Abstract:
The present invention relates to a multi-band noise reduction system for digital audio signals producing a noise reduced digital audio output signal from a digital audio signal. The digital audio signal comprises a target signal and a noise signal, i.e. a noisy digital audio signal. The multi-band noise reduction system operates on a plurality of sub-band signals derived from the digital audio signal and comprises a second or adaptive signal-to-noise ratio estimator which is configured for filtering a plurality of first signal-to-noise ratio estimates of the plurality of sub-band signals with respective time-varying low-pass filters to produce respective second signal-to-noise ratio estimates of the plurality of sub-band signals. A low-pass cut-off frequency of each of the time-varying low-pass filters is adaptable in accordance with a first signal-to-noise ratio estimate determined by a first signal-to-noise ratio estimator and/or the second signal-to-noise ratio estimate of the sub-band signal.
Abstract:
The present invention relates to a multi-band noise reduction system for digital audio signals producing a noise reduced digital audio output signal from a digital audio signal. The digital audio signal comprises a target signal and a noise signal, i.e. a noisy digital audio signal. The multi-band noise reduction system operates on a plurality of sub-band signals derived from the digital audio signal and comprises a second or adaptive signal-to-noise ratio estimator which is configured for filtering a plurality of first signal-to-noise ratio estimates of the plurality of sub-band signals with respective time-varying low-pass filters to produce respective second signal-to-noise ratio estimates of the plurality of sub-band signals. A low-pass cut-off frequency of each of the time-varying low-pass filters is adaptable in accordance with a first signal-to-noise ratio estimate determined by a first signal-to-noise ratio estimator and/or the second signal-to-noise ratio estimate of the sub-band signal.
Abstract:
The present invention relates in one aspect to a microphone array signal processing system comprising a digital buffer coupled to a signal input and configured to store first and second digital audio signals. A beamformer analyzer is configured to, in response to a first voice trigger, determine noise statistics based on the first signal segment of the first digital audio signal and a first signal segment of the second digital audio signal. A coefficients calculator is configured to calculate a first set of fixed beamformer coefficients of a beamforming algorithm. The beamforming algorithm is configured for applying the first set of fixed beamformer coefficients to the first signal segments of the first and second digital audio signals retrieved from the digital buffer to produce a noise reduced digital audio signal.
Abstract:
The present invention relates in one aspect to a microphone array signal processing system comprising a digital buffer coupled to a signal input and configured to store first and second digital audio signals. A beamformer analyser is configured to, in response to a first voice trigger, determine noise statistics based on the first signal segment of the first digital audio signal and a first signal segment of the second digital audio signal. A coefficients calculator is configured to calculate a first set of fixed beamformer coefficients of a beamforming algorithm. The beamforming algorithm is configured for applying the first set of fixed beamformer coefficients to the first signal segments of the first and second digital audio signals retrieved from the digital buffer to produce a noise reduced digital audio signal.
Abstract:
A method comprises processing M subband communication signals and N target-cancelled signals in each subband with a set of beamformer coefficients to obtain an inverse target-cancelled covariance matrix of order N in each band; using a target absence signal to obtain an initial estimate of the noise power in a beamformer output signal averaged over recent frames with target absence in each subband; multiplying the initial noise estimate with a noise correction factor to obtain a refined estimate of the power of the beamformer output noise signal component in each subband; processing the refined estimate with the magnitude of the beamformer output to obtain a postfilter gain value in each subband; processing the beamformer output signal with the postfilter gain value to obtain a postfilter output signal in each subband; and processing the postfilter output subband signals to obtain an enhanced beamformed output signal.
Abstract:
A method comprises processing M subband communication signals and N target-cancelled signals in each subband with a set of beamformer coefficients to obtain an inverse target-cancelled covariance matrix of order N in each band; using a target absence signal to obtain an initial estimate of the noise power in a beamformer output signal averaged over recent frames with target absence in each subband; multiplying the initial noise estimate with a noise correction factor to obtain a refined estimate of the power of the beamformer output noise signal component in each subband; processing the refined estimate with the magnitude of the beamformer output to obtain a postfilter gain value in each subband; processing the beamformer output signal with the postfilter gain value to obtain a postfilter output signal in each subband; and processing the postfilter output subband signals to obtain an enhanced beamformed output signal.