摘要:
A fiberoptic multi-parameter sensing system for monitoring turbomachinery system shaft static and dynamic torques, vibration modes and associated operation status includes a multi-furcated fiber bundle based optical splitter configured to transmit light to a surface of at least one turbomachinery system shaft through a plurality of optical fiber bundles disposed at a plurality of locations in proximity to the surface of the at least one shaft, in which the plurality of locations together are arranged in a substantially axial direction between the ends of the at least one shaft. The system further includes an array of high-temperature bifurcated fiber bundle based reflectance probes to receive reflectance signals from the shaft surface and send to an array of photosensitive detectors, configured to detect dynamic light reflected from the at least one turbomachinery system shaft surface in response to the transmitted light during rotation of at least one turbomachinery system shaft and generate dynamic reflected light signals there from. A sensing mechanism is configured to determine a torque or vibration on at least one turbomachinery system shaft in response to the dynamic reflected light signal signatures based on time-domain and frequency-domain signal processes.
摘要:
The inventive RFID Environmental Monitoring System (RFID_EMS) includes an RFID-based Environmental Monitor and Energy Management Logic for reducing energy consumption in active RFID tags used for long-term active sensing of storage and transit conditions of shipping containers. The RFID-based Environmental Monitor consists of an active RFID tag containing an RF transponder, microcontroller, sensors and associated interface circuitry. The Energy Management Logic provides hardware and software which work together, and consists of executable software or microcontroller logic that monitors and regulates energy use by an RFID tag and associated sensors, and may control the state of specialized peripheral circuits on the tag. By reading the RFID_EMS tag, the invention enables the determination of the condition of precision equipment prior to use, including equipment that requires high readiness after long periods of transit and/or storage.
摘要:
A fiberoptic multi-parameter sensing system for monitoring turbomachinery system shaft static and dynamic torques, vibration modes and associated operation status includes a multi-furcated fiber bundle based optical splitter configured to transmit light to a surface of at least one turbomachinery system shaft through a plurality of optical fiber bundles disposed at a plurality of locations in proximity to the surface of the at least one shaft, in which the plurality of locations together are arranged in a substantially axial direction between the ends of the at least one shaft. The system further includes an array of high-temperature bifurcated fiber bundle based reflectance probes to receive reflectance signals from the shaft surface and send to an array of photosensitive detectors, configured to detect dynamic light reflected from the at least one turbomachinery system shaft surface in response to the transmitted light during rotation of at least one turbomachinery system shaft and generate dynamic reflected light signals there from. A sensing mechanism is configured to determine a torque or vibration on at least one turbomachinery system shaft in response to the dynamic reflected light signal signatures based on time-domain and frequency-domain signal processes.
摘要:
Certain embodiments of the invention may include systems, methods, and apparatus for providing detecting lightning strikes. According to an example embodiment of the invention, a method for determining a lightning strike event, classification, and location is provided. The method includes receiving lightning electrical current in least one down conductor, generating voltage and polarity signals based at least in part on the received lightning electrical current, storing the generated voltage and polarity signals, and determining the lightning strike event, classification, and location based at least in part on the stored voltage and polarity signals.