摘要:
A system and method for improved mobile assisted handoff in a digital cellular communication system that gives the mobile station the ability to synchronize to candidate base station transmissions in order to read the transmitted digital voice color code (DVCC) of the candidate station. This process is performed during the idle period between two designated time slots in a TDMA frame. The invention is an enhancement to the existing mobile assisted handoff procedures described in the existing IS-136 standard. The present invention improves on the IS-136 standard's use of received signal strength measurements in that it allows the mobile station to acquire and report information regarding the digital verification color code (DVCC) of the candidate base station channels. Since the DVCC uniquely identifies the cell site to which a channel belongs, it is used to distinguish the candidate base station channel from its co-channel interferers, allowing the network to make a more informed handoff decision.
摘要:
Systems and methods for performing joint demodulation using a Viterbi equalizer having an adaptive total number of states are disclosed. Generally, a method includes joint demodulating a desired signal and none or more interfering signals with a Viterbi equalizer having an adaptive total number of states based on channel impulse response (CIR) coefficients associated with a desired signal ant the one or more interfering signals.
摘要:
First and second partially collapsed metric values are determined for each bit in a symbol transition. Each first partially collapsed metric value is a cumulative metric of starting in a first state and ending in a second state in L transitions with the respective bit in the symbol transition being a first value. Each second partially collapsed metric value is a cumulative metric of starting in the first state and ending in the second state in L transitions with the respective bit in the symbol transition being a second value, the second value differing from the first value. For each bit in the symbol transition, a relative likelihood value is determined based on its respective first and second partially collapsed metric values. A symbol is decoded based on a hard decision performed using the relative likelihood value for each bit in the symbol transition.