摘要:
A stator and a method of forming the stator comprises providing a stator frame having a frame plate, and connecting key bars to the frame plate at respective connection points, each of the key bars having a dovetail. The stator and method further includes providing a stator core comprising laminations each having a dovetail slot formed therein. Each dovetail is engaged into a respective dovetail slot so that at least some of the dovetails contact respective laminations at respective contact points. The locations of the contact points are controlled such that a force load transmitted by the contact points is evenly distributed among the contact points to thus minimize the maximum force transmitted. The location of the contact points is controlled such that a key bar stress at the connection points is also minimized.
摘要:
A stator comprises a stator frame, a plurality of key bars connected to the stator frame and a stator core. Each of the key bars has a dovetail. The stator core is formed by a pre-packaged stator core section including laminations each having a dovetail slot for engaging a respective dovetail. The stator core also includes a manually stacked stator core section including manually stacked laminations each having a dovetail slot for engaging respective dovetails. The cross-sectional area of the dovetail slots in the pre-packaged stator core section is larger than the cross-sectional area of the dovetail slots of the manually stacked stator core section.
摘要:
A stator comprises a stator frame, a plurality of key bars connected to the stator frame and a stator core. Each of the key bars has a dovetail. The stator core is formed by a pre-packaged stator core section including laminations each having a dovetail slot for engaging a respective dovetail. The stator core also includes a manually stacked stator core section including manually stacked laminations each having a dovetail slot for engaging respective dovetails. The cross-sectional area of the dovetail slots in the pre-packaged stator core section is larger than the cross-sectional area of the dovetail slots of the manually stacked stator core section.
摘要:
A stator and a method of forming the stator comprises providing a stator frame having a frame plate, and connecting key bars to the frame plate at respective connection points, each of the key bars having a dovetail. The stator and method further includes providing a stator core comprising laminations each having a dovetail slot formed therein. Each dovetail is engaged into a respective dovetail slot so that at least some of the dovetails contact respective laminations at respective contact points. The locations of the contact points are controlled such that a force load transmitted by the contact points is evenly distributed among the contact points to thus minimize the maximum force transmitted. The location of the contact points is controlled such that a key bar stress at the connection points is also minimized.
摘要:
The conventional bar by bar assembly of a generator rotor can be replaced with a solid rotor having parallel slots milled into a rotor forging so that containment components can be replaced with a simplified enclosure. A dynamic blocking restraint assembly is beneficial to control winding position, to prevent load dissymmetries against the winding enclosure, and to provide sufficient preload to obtain predictable behavior in all expected modes of operation. The blocking assembly includes a sandwich construction of a first support block, at least one spring, additional wedge-shaped spacers in the case of multiple springs, and a second support block disposed in a symmetrical arrangement substantially aligned with the quadrature axis of the rotor. The assembly serves to provide circumferential restraint and to match the structural hoop stiffness of the winding enclosure. The construction of components can be configured to accommodate any desired degree of preloading.