摘要:
A process for forming a Vertical Cavity Laser (VCL) structure that includes using an intermixing technique involving an high temperature annealing operation to overcome lateral carrier diffusion away from the center of the active region of the VCL. Degrading effects of the high temperature annealing are avoided by first restricting the dopant associated with the p-type Bragg reflector (DBR) region of the VCL to low diffusivity types such as carbon, thus eliminating a thermally-induced diffusion that occurs when other p-type dopants such as beryllium (Be), Zinc (Zn), or Magnesium (Mg) are employed. Further, the oxide created to act as an aperture in a conventional VCL structure is removed leaving behind an air gap having the shape of the oxide aperture. It was found that the degrading effects associated with annealing the VCL structure were minimized using carbon as the p-type dopant and air gap apertures. In addition, it was determined that the annealed, air gap apertured, VCL provided the same optical loss properties previously attributed only to an un-annealed, oxide-apertured, VCL—but without sacrificing efficiency due to lateral carrier diffusion.