摘要:
Systems and methods for two degree of freedom dithering for micro-electro-mechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
摘要:
Systems and methods for an encoder and control scheme are provided. In one embodiment, a micro-electromechanical system (MEMS) device comprises: a stator having a first marker and a second marker arranged on a surface of the stator to form a sensing pattern; a sweeping element that dithers in a plane parallel to the surface of the stator along a sweep path that crosses the first marker and a second marker; an overlap sense circuit operable to measure an area overlap between the sweeping element and the sensing pattern, wherein the overlap sense circuit generates a pulse train signal output that varies as a function of the area overlap.
摘要:
Systems and methods for an encoder and control scheme are provided. In one embodiment, a micro-electromechanical system (MEMS) device comprises: a stator having a first marker and a second marker arranged on a surface of the stator to form a sensing pattern; a sweeping element that dithers in a plane parallel to the surface of the stator along a sweep path that crosses the first marker and a second marker; an overlap sense circuit operable to measure an area overlap between the sweeping element and the sensing pattern, wherein the overlap sense circuit generates a pulse train signal output that varies as a function of the area overlap.
摘要:
A MEMS sensor comprises a substrate and at least one proof mass having a first plurality of combs. The proof mass is coupled to the substrate via one or more suspension beams such that the proof mass and the first plurality of combs are movable. The MEMS sensor also comprises at least one anchor having a second plurality of combs. The anchor is coupled to the substrate such that the anchor and second plurality of combs are fixed in position relative to the substrate. The first plurality of combs are interleaved with the second plurality of combs. Each of the combs comprises a plurality of conductive layers electrically isolated from each other by one or more non-conductive layers. Each conductive layer is individually coupled to a respective electric potential such that capacitance between the combs varies approximately linearly with displacement of the movable combs in an out-of-plane direction.
摘要:
A lateration system comprising at least one transmitter attached to a first object and configured to emit pulses, three or more receivers attached to at least one second object and configured to receive the pulses emitted by the transmitter, and a processor configured to process information received from the three or more receivers, and to generate a vector based on lateration. Lateration is one of multilateration and trilateration. The vector is used by the processor to constrain error growth in a navigation solution.
摘要:
A method for calibrating a micro-electro-mechanical system (MEMS) vibrating structure gyroscope is provided. The method includes obtaining an indication of a position of at least one proof mass with respect to at least one drive electrode and applying an electrostatic force to the at least one proof mass as a function of the indication, the electrostatic force configured to position the at least one proof mass in a first position with respect to at least one drive electrode.
摘要:
Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
摘要:
In an example, an interposer chip is provided. The interposer chip includes a base portion and a chip mounting portion. The interposer chip also includes one or more flexures connecting the base portion to the chip mounting portion. Additionally, a first plurality of projections extends from the base portion towards the chip mounting portion, and a second plurality of projections extends from the chip mounting portion towards the base portion and extending into interstices formed by first plurality of projections.
摘要:
A ground contact switch system comprises a first object configured to contact a ground surface during a stride, and one or more switches coupled to the first object. An inertial measurement unit can be coupled to the first object. The one or more switches are configured to detect when the first object is at a stationary portion of the stride. The one or more switches can also be configured to send a signal to activate an error correction scheme for the inertial measurement unit.
摘要:
A ground contact switch system comprises a first object configured to contact a ground surface during a stride, and one or more switches coupled to the first object. An inertial measurement unit can be coupled to the first object. The one or more switches are configured to detect when the first object is at a stationary portion of the stride. The one or more switches can also be configured to send a signal to activate an error correction scheme for the inertial measurement unit.