摘要:
There is disclosed an optical data storage medium in which the weather resistance of the semitransparent reflective film is improved and the adhesive property between the semitransparent reflective film and a substrate is enhanced, and which has a higher reliability. In an optical data storage medium (6), on the side on which a reproduction light (8) is incident, a first information layer (9) is located while on the side opposite to the side on which the reproduction light (8) is incident, a second information layer (10) is located. A semitransparent reflective film (3) of first information layer (9) is AgPdCu alloy thin films containing 0.5 to 3.0 weight % Pd and 0.1 to 3.0 weight % Cu or AgPdTi alloy thin films containing 0.5 to 3.0 weight % Pd and 0.1 to 3.0 weight % Ti. At the wavelength 650 nm, the optimum film thickness of AgPdCu alloy thin film is 5 to 18 nm and the optimum film thickness of AgPdTi alloy thin film is 10 to 25 nm. At the wavelength 450 nm, the optimum film thickness of AgPdCu alloy thin film is 10 to 25 nm, and the optimum film thickness of AgPdTi alloy thin film is 15 to 25 nm.
摘要:
A heat-mode recording medium has (i) a substrate and (ii) a recording layer formed thereon which comprises an organic compound of which crystallization direction can be thermally and reversibly controlled. This heat-mode recording medium can be prepared or initialized by at least the steps of fusing the organic compound contained in the recording layer with application of heat thereto and subsequently cooling a predetermined fused portion of the recording layer in such a fashion that the crystallization direction of the organic compound in the recording layer is oriented in a predetermined direction.
摘要:
An optically anisotropic recording medium and a method of recording and erasing method using the recording medium are disclosed, which comprises the steps of applying heat or light to the recording medium which comprises a recording layer made of optically anisotropic organic thin-film-shaped crystals to raise the temperature of an organic material or which comprises the optically anisotropic organic thin-film-shaped crystals to a recording temperature at which the crystals are fused, performing partial changing of the crystalline state of the crystals by rapidly cooling the recording layer, thereby recording information in the recording layer; and heating the recording layer to an erasing temperature which is lower than the recording temperature, at which the crystals are not fused, but the molecules thereof can be thermally moved.