Abstract:
A toner bearing member is provided which includes a conductive support, an insulation layer provided on the conductive support, multiple electrodes arranged at regular intervals on the insulation layer, a surface layer covering the multiple electrodes, comprising a polymerized compound having a specific unit, and a voltage applicator that applies a voltage between the conductive support and the multiple electrodes while periodically reversing an electric field generated therebetween.
Abstract:
A toner bearing member having an electroconductive substrate, an insulation layer formed on the electroconductive substrate, multiple electrodes spaced a constant distance apart therebetween, formed on the insulation layer, and a surface layer that covers the multiple electrodes, the surface layer comprising a polymerizable material comprising a structure unit represented by the following chemical structure 1 and at least one of cyclohexanone and cyclopentanone, where R1 and R2, each, independently represent a hydrogen atom, an alkyl group, or an aryl group, or form a cyclic hydrocarbon residual group having 5 to 8 carbon atoms, R3 and R4, each, independently represent a hydrogen atom, a halogen atom, an alkyl group, or an aryl group, and “a” and “b” represent integers of 1 or 2.
Abstract:
An image forming apparatus, including an electrophotographic photoreceptor including: an electroconductive substrate, a photosensitive layer overlying the electroconductive substrate, and a protective layer overlying the photosensitive layer and serving as an outermost layer, wherein the protective layer has an average abraded thickness not greater than 1 μm after the electrophotographic image forming apparatus produces 100,000 images; a charger charging the electrophotographic photoreceptor; an irradiator irradiating the electrophotographic photoreceptor to form an electrostatic latent image thereon; an image developer developing the electrostatic latent image with a toner to form a toner image on the electrophotographic photoreceptor; a transferer transferring the toner image onto a transfer sheet; and a cleaner cleaning a surface of the electrophotographic photoreceptor, wherein the cleaner comprises a cleaning brush impregnated with a resin.
Abstract:
The developing device includes a developer charging member configured to charge a toner serving as a one developer; and a developer bearing member configured to bear and feed the charged toner while forming an electric field so that the toner hops. The developer bearing member includes an insulating substrate; plural electrodes arranged on the insulating substrate in a developer feeding direction to form the electric field; and an outermost layer covering the plural electrodes. The toner has a softening point of from 115 to 130° C.
Abstract:
The developing device includes a developer charging member configured to charge a toner serving as a one developer; and a developer bearing member configured to bear and feed the charged toner while forming an electric field so that the toner hops. The developer bearing member includes an insulating substrate; plural electrodes arranged on the insulating substrate in a developer feeding direction to form the electric field; and an outermost layer covering the plural electrodes. The toner has a softening point of from 115 to 130° C.
Abstract:
An image forming method, includes: forming a latent electrostatic image on a latent electrostatic image carrier; developing the latent electrostatic image with a toner to thereby form a visible image; transferring the visible image to a recording medium; and fixing the image transferred to the recording medium. The latent electrostatic image carrier includes: a support, a photoconductive layer on the support, and a surface protective layer on the support. The surface protective layer includes a reactant made by cross-linking the following: an electric charge transporting material which comprises a reactive functional group, a cross-linking resin, and a fluorine surfactant. The toner comprises an inorganic fine particle which defines an effective inorganic fine particle amount in a range of 0.8% by mass to 3.0% by mass calculated from the following equation (1): Effective inorganic particle amount ( % ) = Inorganic particle amount ( % ) SF - 2 / 100 Equation ( 1 ) where SF-2 denotes a shape factor of the toner.
Abstract:
A toner bearing member is provided which includes a conductive support, an insulation layer provided on the conductive support, multiple electrodes arranged at regular intervals on the insulation layer, a surface layer covering the multiple electrodes, comprising a polymerized compound having a specific unit, and a voltage applicator that applies a voltage between the conductive support and the multiple electrodes while periodically reversing an electric field generated therebetween.
Abstract:
An image forming method, includes: forming a latent electrostatic image on a latent electrostatic image carrier; developing the latent electrostatic image with a toner to thereby form a visible image; transferring the visible image to a recording medium; and fixing the image transferred to the recording medium. The latent electrostatic image carrier includes: a support, a photoconductive layer on the support, and a surface protective layer on the support. The surface protective layer includes a reactant made by cross-linking the following: an electric charge transporting material which comprises a reactive functional group, a cross-linking resin, and a fluorine surfactant. The toner comprises an inorganic fine particle which defines an effective inorganic fine particle amount in a range of 0.8% by mass to 3.0% by mass calculated from the following equation (1): Effective inorganic particle amount ( % ) = Inorganic particle amount ( % ) SF - 2 / 100 Equation ( 1 ) where SF-2 denotes a shape factor of the toner.
Abstract:
An image forming method, includes: forming a latent electrostatic image on a latent electrostatic image carrier; developing the latent electrostatic image with a toner to thereby form a visible image; transferring the visible image to a recording medium; and fixing the image transferred to the recording medium. The latent electrostatic image carrier includes: a support, a photoconductive layer on the support, and a surface protective layer on the support. The surface protective layer includes a reactant made by cross-linking the following: an electric charge transporting material which comprises a reactive functional group, a cross-linking resin, and a fluorine surfactant. The toner comprises an inorganic fine particle which defines an effective inorganic fine particle amount in a range of 0.8% by mass to 3.0% by mass calculated from the following equation (1): Effective inorganic particle amount ( % ) = Inorganic particle amount ( % ) SF - 2 / 100 Equation ( 1 ) where SF-2 denotes a shape factor of the toner.
Abstract:
An electrophotographic photoconductor includes an electroconductive substrate, a photoconductive layer arranged over the electroconductive layer with or without the interposition of an undercoat layer, and a surface top layer containing a crosslinkable resin arranged over the photoconductive layer, the photoconductive layer includes a charge generation layer containing a charge generating material, and a charge transport layer containing a charge transporting material, in which the surface top layer is substantially free from hydroxyl groups and residual uncured portions.