Abstract:
An information processing system includes one or more information processing apparatuses for determining lifetimes of components, to be replaced by preventive maintenance, of respective electric devices. The information processing system includes a leading variable specifying unit configured to specify, based on variables that represent use states of the electric devices and failure data of the electric devices which have been obtained from the electric devices, a plurality of leading variables relevant to the lifetimes of the components; a lifetime matrix creating unit configured to classify a plurality of values of each of the leading variables into sections to create a lifetime matrix in which the lifetimes of the components are set with respect to combinations of the sections each of which relates to a different leading variable; and a lifetime outputting unit configured to determine the lifetimes of the components with respect to the respective electric devices.
Abstract:
An image forming apparatus includes an image bearer, a charging, a charge power supply to supply a charging bias to the charging device, a developing device, a toner adhesion amount detector, an environment detector, and a controller to determine whether to execute a charging bias adjustment process in which the charging device charges the image bearer to have different potentials, the developing device supplies the toner to the image bearer according to the different potentials, the toner adhesion amount detector detects the amount of toner adhering to the image bearer, and the controller adjusts the charging. The controller includes a memory device to store the environment data, and is configured to compare the environment data with previous environment data stored in the memory device, and determine not to execute the charging bias adjustment process when an environment change amount is not greater than a threshold.
Abstract:
The image forming apparatus includes a process unit, a latent image writer, a power source, and a controller. The process unit is detachably attachable relative to the image forming apparatus and includes, as a single integrated unit, a latent image bearing member to bear a latent image on a surface thereof, a charging device to charge the surface of the latent image bearing member, and a development device to develop the latent image with toner. The controller causes the power source to output a charging bias at a predetermined target level supplied to the charging device. The process unit includes a first storage device to store correction information for calculating the predetermined target level of the charging bias in accordance with a combination of the latent image bearing member and the charging device. The controller corrects the predetermined target level based on the correction information in the first storage device.
Abstract:
An image forming apparatus including a first carriage having a recording head that ejects black liquid droplets and is movable in a main scanning direction, a second carriage having a recording head that ejects color liquid droplets and is detachably attachable to the first carriage to move in the main scanning direction together with the first carriage while attached to the first carriage, and a cap member that caps the recording head of the second carriage while the first carriage is moving with the second carriage separated from the first carriage. Attachment and detachment of the second carriage to and from the first carriage are performed within a scanning range through which the first carriage is movable.
Abstract:
An image forming apparatus including a first carriage movable in a main scanning direction, a second carriage separatably dockable with the first carriage, a first positioning unit to position the second carriage relative to the first carriage in a sub-scanning direction, a second positioning unit to position the second carriage relative to the first carriage in a rotary direction, and a third positioning unit to position the second carriage relative to the first carriage in the main scanning direction. The first positioning unit includes a reference shaft and notched positioning members to engage the reference shaft. The second positioning unit contacts one of the first and second carriages in the rotary direction upon docking of the first and second carriages. The third positioning unit includes a positioning member, parallel grooved members in the sub-scanning direction, and parallel shafts extending in the sub-scanning direction to engage the grooved members.
Abstract:
An image forming apparatus includes a developing device including at least one stirring rotator configured to stir a developer in the developing device, a driver configured to drive the at least one stirring rotator in forward and reverse rotation, a device detector configured to detect whether the developing device is set in the image forming apparatus, and control circuitry configured to execute a warm-up operation. In the warm-up operation, the driver drives the at least one stirring rotator alternately in the reverse rotation and the forward rotation in response to a detection of setting of the developing device in the image forming apparatus by the device detector and a detection of a predetermined condition.
Abstract:
An image forming apparatus includes a driving device, a transfer body, a toner detector, an error notification device, and a controller. The toner detector detects, at a preparation running and while the driving device drives a latent image bearer, one of a toner adhesion amount at a background portion of the latent image bearer and a toner adhesion amount at a background corresponding region of a transfer body. The error notification device notifies a user of an error with the toner adhesion being equal to or greater than a predetermined threshold value. The driving device stops only a developer bearer after driving both the latent image bearer and the developer bearer at the preparation running, but before a trailing edge of a detection target region of one of the background portion of the latent image bearer and the background corresponding region advances to an opposite position to the toner detector.
Abstract:
An image forming apparatus including a first carriage having a recording head that ejects black liquid droplets and is movable in a main scanning direction, a second carriage having a recording head that ejects color liquid droplets and is detachably attachable to the first carriage to move in the main scanning direction together with the first carriage while attached to the first carriage, and a cap member that caps the recording head of the second carriage while the first carriage is moving with the second carriage separated from the first carriage. Attachment and detachment of the second carriage to and from the first carriage are performed within a scanning range through which the first carriage is movable.
Abstract:
An image forming apparatus includes an image bearer, a developing device, a motor, and circuitry. The developing device includes a screw and a developing roller. The screw stirs and conveys a developer. The developing roller bears the developer stirred and conveyed by the screw, brings the developer into contact with the image bearer, and develops an electrostatic latent image on the image bearer. The motor drives the developing device at multiple process speeds. The circuitry is configured to cause the motor to drive the screw and the developing roller before the developing roller starts developing the electrostatic latent image on the image bearer and adjust a drive time of the motor based on a process speed in a previous printing and a process speed in a next printing.
Abstract:
A developing device includes a developer conveyer, a bearing, a flange, and a developer mover. The developer conveyer is rotatable and configured to convey a developer. The bearing rotatably supports a support shaft of the developer conveyer. The flange is disposed at an end portion of the developer conveyor to regulate a movement of the developer in an axial direction of the developer conveyer. The developer mover is disposed on a surface of the flange facing the bearing and configured to move the developer that enters between the flange and the bearing.