Abstract:
A fuse assembly for rope systems. A catch is a rope segment having a certain failure strength. An accompanying trigger component has a predetermined failure point which can be less than the failure strength of the catch, acting as a sacrificial element to reveal the potential risk of rope recoil. In one embodiment, the catch includes connecting ends, and the trigger is remote from the catch. In other embodiments the trigger includes the connecting ends and the catch is separate from but works cooperatively with the trigger. Additional hold components can accompany the system, as well as first and second chafe protection layers.
Abstract:
A rope structure defining first and second ends and comprising first and second directional strands defining a first and second characteristics, respectively, and at least one additional strand. The second directional strand is distinguishable from the first directional strand and the at least one additional strand is distinguishable from the first and second directional strands based on the first and second characteristics. A first adjacent portion defined by the first directional strand and a second adjacent portion defined by the second directional strand are arranged within intermediate sections of the rope structure such that the first adjacent portion(s) of the first directional strand is(are) closer to the first end of the rope than the second adjacent portion(s) of the second directional strand and the second adjacent portion is(are) closer to the second end of the rope than the first adjacent portion.
Abstract:
An RFID rope structure comprises an RFID thread and a plurality of rope elements. The RFID thread comprises a carrying structure and a plurality of RFID systems supported by the carrying structure. The plurality of rope elements are combined to define a reference axis. The RFID thread is supported by the rope elements such that each of the RFID systems is arranged at a predetermined location along the rope reference axis.
Abstract:
A round sling system comprises a bearing structure, a cover, and at least one organizer secured to the cover. The bearing structure is arranged to define a plurality of loop portions and to define at least one bearing structure end portion. The cover defines a cover chamber. The at least one organizer is configured to engage the bearing structure such that the at least one organizer maintains a position of the bearing structure relative to the cover and the at least one organizer maintains a spatial relationship of the loop portions at least within the at least one bearing structure end portion.
Abstract:
A plurality of first fibers and a plurality of second fibers are provided. A coefficient of friction of the second fibers is greater than a coefficient of friction of the first fibers. Abrasion resistance characteristics of the second fibers are greater than abrasion resistance properties of the first fibers. A gripping ability of the second fibers is greater than a gripping ability of the first fibers. The first fibers and the second fibers are passed through a convergence duct such that the first fibers pick up the second fibers. A false twist is imparted to the combination of the plurality of first fibers and the plurality of second fibers. The false twist is removed from the combination of the plurality of first fibers and the plurality of second fibers to form the blended yarn.
Abstract:
A rope structure or method of forming a rope structure comprises a rope comprising a plurality of strands. The rope comprises first and second splice locations, an eye region between the first and second splice locations, and a main region. The main region of the rope is located adjacent to the first splice location and in an opposite direction along the rope from the eye region. At least one of the strands is a selected strand. An extracted portion of the at least one selected strand is extracted from the rope and inserted into the rope such that a bridge portion of the at least one selected strand extends between the first and second splice locations and a diameter of the rope is substantially consistent in the main region.
Abstract:
A rope structure has a plurality of link structures each defining first and second ends and at least one organizer member. Each first end comprises at least first and second bend portions, and each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures and the second end of a second one of the plurality of link structures engages the at least one organizer member such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A blended yarn comprises a plurality of first fibers and a plurality of second fibers. A coefficient of friction of the second fibers is greater than a coefficient of friction of the first fibers. Abrasion resistance characteristics of the second fibers are greater than abrasion resistance properties of the first fibers. A gripping ability of the second fibers is greater than a gripping ability of the first fibers. The plurality of second fibers are combined with the plurality of first fibers such that the first fibers extend along the length of the blended yarn and the second fibers do not extend along the length of the blended yarn at least a portion of the second fibers are engaged with and extend from the plurality of first fibers effectively to define surface characteristics of the blended yarn.
Abstract:
A method for non-destructively estimating a current physical condition of a cordage product in-service is described. The method involves obtaining sensor data associated with the cordage product while in-service handling a load. The sensor data includes any combination of cordage product elongation data, applied load data, and diametric data. The method further includes determining an axial stiffness value associated with the cordage product based on the sensor data and estimating a health state of the cordage product based on the determined axial stiffness value. The estimated health state is indicative of the current physical condition of the cordage product.
Abstract:
A fiber structure for forming a rope structure has a base matrix of base fiber material and at least one lubricity portion of lubricity material. The lubricity material determines a lubricity of at least a portion of a surface of the fiber structure.