Systems and methods for retrieving causal sets of events from unstructured signals
    1.
    发明授权
    Systems and methods for retrieving causal sets of events from unstructured signals 有权
    从非结构化信号中检索事件的因果集的系统和方法

    公开(公告)号:US08909025B2

    公开(公告)日:2014-12-09

    申请号:US13427610

    申请日:2012-03-22

    IPC分类号: H04N5/91 H04N9/80 G06K9/00

    CPC分类号: G06K9/00718

    摘要: A method for providing improved performance in retrieving and classifying causal sets of events from an unstructured signal can comprise applying a temporal-causal analysis to the unstructured signal. The temporal-causal analysis can comprise representing the occurrence times of visual events from an unstructured signal as a set of point processes. An exemplary embodiment can comprise interpreting a set of visual codewords produced by a space-time-dictionary representation of the unstructured video sequence as the set of point processes. A nonparametric estimate of the cross-spectrum between pairs of point processes can be obtained. In an exemplary embodiment, a spectral version of the pairwise test for Granger causality can be applied to the nonparametric estimate to identify patterns of interactions between visual codewords and group them into semantically meaningful independent causal sets. The method can further comprise leveraging the segmentation achieved during temporal causal analysis to improve performance in categorizing causal sets.

    摘要翻译: 一种用于在从非结构化信号中检索和分类事件的因果集合中提供改进的性能的方法可以包括对非结构化信号应用时间因果分析。 时间因果分析可以包括将来自非结构化信号的视觉事件的发生时间表示为一组点处理。 示例性实施例可以包括解释由非结构化视频序列的空时 - 字典表示产生的一组可视码字作为点处理的集合。 可以获得点过程对之间的交叉谱的非参数估计。 在示例性实施例中,用于格兰杰因果关系的成对检验的频谱版本可以应用于非参数估计,以识别视觉码字之间的交互模式,并将它们分组成语义有意义的独立因果集合。 该方法可以进一步包括利用在时间因果分析期间实现的分段来提高对因果集进行分类的性能。

    SYSTEMS AND METHODS FOR RETRIEVING CASUAL SETS OF EVENTS FROM UNSTRUCTURED SIGNALS
    2.
    发明申请
    SYSTEMS AND METHODS FOR RETRIEVING CASUAL SETS OF EVENTS FROM UNSTRUCTURED SIGNALS 有权
    用于从非结构化信号中检索休闲活动的系统和方法

    公开(公告)号:US20120301105A1

    公开(公告)日:2012-11-29

    申请号:US13427610

    申请日:2012-03-22

    IPC分类号: H04N5/91

    CPC分类号: G06K9/00718

    摘要: A method for providing improved performance in retrieving and classifying causal sets of events from an unstructured signal can comprise applying a temporal-causal analysis to the unstructured signal. The temporal-causal analysis can comprise representing the occurrence times of visual events from an unstructured signal as a set of point processes. An exemplary embodiment can comprise interpreting a set of visual codewords produced by a space-time-dictionary representation of the unstructured video sequence as the set of point processes. A nonparametric estimate of the cross-spectrum between pairs of point processes can be obtained. In an exemplary embodiment, a spectral version of the pairwise test for Granger causality can be applied to the nonparametric estimate to identify patterns of interactions between visual codewords and group them into semantically meaningful independent causal sets. The method can further comprise leveraging the segmentation achieved during temporal causal analysis to improve performance in categorizing causal sets.

    摘要翻译: 一种用于在从非结构化信号中检索和分类事件的因果集合中提供改进的性能的方法可以包括对非结构化信号应用时间因果分析。 时间因果分析可以包括将来自非结构化信号的视觉事件的发生时间表示为一组点处理。 示例性实施例可以包括解释由非结构化视频序列的空时 - 字典表示产生的一组可视码字作为点处理的集合。 可以获得点过程对之间的交叉谱的非参数估计。 在示例性实施例中,用于格兰杰因果关系的成对检验的频谱版本可以应用于非参数估计,以识别视觉码字之间的交互模式,并将它们分组成语义有意义的独立因果集合。 该方法可以进一步包括利用在时间因果分析期间实现的分段来提高对因果集进行分类的性能。