Abstract:
Methods performed by a mobile node (MN) in a secured network for handoff of communication from a serving access point (AP) to a target AP are provided. In a bounded delay channel switching (BDCS) method, the MN periodically switches between a first channel and one of multiple other channels during handoff, utilizes the first channel to transmit/receive packets to/from a corresponding node (CN) via the serving AP and utilizes one of the other channels to perform the handoff procedure to the target AP. In a dual-MAC switching (DMS) method, the MN employs a first MAC (medium access control) address to transmit/receive packets to/from the serving AP and a second MAC address to perform the handoff procedure to the target AP. The BDCS and DMS methods may be used concurrently, and may be used in a secured network that complies with, e.g., the IEEE 802.11, IEEE 802.1x or IEEE 802.11i plus IEEE 802.11f standards.
Abstract:
Methods performed by a mobile node (MN) in a secured network for handoff of communication from a serving access point (AP) to a target AP are provided. In a bounded delay channel switching (BDCS) method, the MN periodically switches between a first channel and one of multiple other channels during handoff, utilizes the first channel to transmit/receive packets to/from a corresponding node (CN) via the serving AP and utilizes one of the other channels to perform the handoff procedure to the target AP. In a dual-MAC switching (DMS) method, the MN employs a first MAC (medium access control) address to transmit/receive packets to/from the serving AP and a second MAC address to perform the handoff procedure to the target AP. The BDCS and DMS methods may be used concurrently, and may be used in a secured network that complies with, e.g., the IEEE 802.11, IEEE 802.1x or IEEE 802.11i plus IEEE 802.11f standards.
Abstract:
Methods performed by a mobile node (MN) in a secured network for handoff of communication from a serving access point (AP) to a target AP are provided. In a bounded delay channel switching (BDCS) method, the MN periodically switches between a first channel and one of multiple other channels during handoff, utilizes the first channel to transmit/receive packets to/from a corresponding node (CN) via the serving AP and utilizes one of the other channels to perform the handoff procedure to the target AP. In a dual-MAC switching (DMS) method, the MN employs a first MAC (medium access control) address to transmit/receive packets to/from the serving AP and a second MAC address to perform the handoff procedure to the target AP.
Abstract:
A packet transmitting method of wireless network is provided. The packet transmitting method determines whether the packet to be transmitted is a real-time packet or not, and, when the packet is a real-time packet, a re-transmission mechanism of the packet is determined to be ON or OFF according to the transmission status of the wireless network itself.
Abstract:
A system and method for reducing call establishment delay in wireless network is provided, in which a network node establishes a call to a wireless terminal controlled by an AP via a sever. The wireless terminal notifies the server of its listen interval. In the power saving mode, the wireless terminal wakes up every listen interval and listen the beacon to check whether any buffered packet for it. When the wireless terminal learns from the beacon that there are packets waiting, it communicates with the access point to retrieve them. The server records a listen time at which the wireless terminal will wake tip and listen to the AP based on the listen interval. When a network node calls the wireless terminal, the server buffers the request for a time interval based on the listen time, and then sends the request to the wireless terminal.
Abstract:
Disclosed is a load balancing apparatus and method in wireless network hotspots, which comprises a resource allocation module and a load balancer. The resources reallocation module establishes the resources module and the relationship between access points (APs) and STAs in the wireless network hotspots, and seeks possible load balance shift paths (LBSPs). From these possible LBSPs, an LBSP is selected. Based on the selected LBSP, the load balancer reallocates network resources and dynamically arranges the load among the APs in the wireless network hotspots. This invention can be applicable to a centralized or a decentralized wireless communication system.
Abstract:
Methods performed by a mobile node (MN) in a secured network for handoff of communication from a serving access point (AP) to a target AP are provided. In a bounded delay channel switching (BDCS) method, the MN periodically switches between a first channel and one of multiple other channels during handoff, utilizes the first channel to transmit/receive packets to/from a corresponding node (CN) via the serving AP and utilizes one of the other channels to perform the handoff procedure to the target AP. In a dual-MAC switching (DMS) method, the MN employs a first MAC (medium access control) address to transmit/receive packets to/from the serving AP and a second MAC address to perform the handoff procedure to the target AP. The BDCS and DMS methods may be used concurrently, and may be used in a secured network that complies with, e.g., the IEEE 802.11, IEEE 802.1x or IEEE 802.11i plus IEEE 802.11f standards.
Abstract:
A system and method for reducing call establishment delay in wireless network is provided, in which a network node establishes a call to a wireless terminal controlled by an AP via a server. The wireless terminal notifies the server of its listen interval. In the power saving mode, the wireless terminal wakes up every listen interval and listen the beacon to check whether any buffered packet for it. When the wireless terminal learns from the beacon that there are packets waiting, it communicates with the access point to retrieve them. The server records a listen time at which the wireless terminal will wake up and listen to the AP based on the listen interval. When a network node calls the wireless terminal, the server buffers the request for a time interval based on the listen time, and then sends the request to the wireless terminal.
Abstract:
A cipher method and system for multicast service. A group includes multiple user equipment, each having a respective key. The keys are orthogonal to one another. A content provider provides a raw message to the user equipment of the group. A BM-SC server has a key set composed of the respective keys of all user equipment of the group to encipher the raw message to thus obtain an enciphered message for broadcast. All user equipment of the group receives and deciphers the enciphered message with the respective keys. When a user equipment leaves the group, the key set held by BM-SC is updated by removing the key of the leaving user equipment.
Abstract:
A method and system enabling roaming between different wireless networks. A mobile device supporting low and high-tier wireless network standards is adapted to roam between a low-tier wireless network and a high-tier wireless network with lower bandwidth but more mobility than the low-tier wireless network. Via a virtual GPRS support node, a plurality of data packets and control signals are delivered between low and high-tier wireless networks.