Abstract:
The invention provides a metal alkoxide complex of Formula (I), wherein X, M, R1, R2, R3, m, n, y and z are as defined in the Description. The invention also provides a catalyst composition comprising the metal alkoxide complex and a hydroxy-containing compound, wherein the molar ratio of the metal alkoxide complex to the hydroxy-containing compound is 1:01-1000. The invention also provides a production method of poly-ε- caprolactone or polyactide, wherein an ε-caprolactone monomer or a lactide monomer is reacted in the presence of the metal alkoxide complex or catalyst composition to obtain poly-ε-caprolactone or polylactide. The metal alkoxide complex and the catalyst composition thereof can be used to catalyze the synthesis of poly-ε- caprolactone or polylactide with a high efficiency. The molecular weight of polycaprolactone or polylactide can be controlled by the molar ratio of the metal alkoxide complex and the hydroxy-containing compound, and is adjustable in the range of 1000-600,000, and wherein the molecular weight distribution is from 1.03 to 1.50. [Xn-mM(OCR1R2R3)m]y·(organic solvent)z (I)
Abstract:
The invention provides a metal alkoxide complex of Formula (I), wherein X, M, R1, R2, R3, m, n, y and z are as defined in the Description. The invention also provides a catalyst composition comprising the metal alkoxide complex and a hydroxy-containing compound, wherein the molar ratio of the metal alkoxide complex to the hydroxy-containing compound is 1:0.1-1000. The invention also provides a production method of poly-ε-caprolactone or polyactide, wherein an ε-caprolactone monomer or a lactide monomer is reacted in the presence of the metal alkoxide complex or catalyst composition to obtain poly-ε-caprolactone or polylactide. The metal alkoxide complex and the catalyst composition thereof can be used to catalyze the synthesis of poly-ε-caprolactone or polylactide with a high efficiency. The molecular weight of polycaprolactone or polylactide can be controlled by the molar ratio of the metal alkoxide complex and the hydroxy-containing compound, and is adjustable in the range of 1000-600,000, and wherein the molecular weight distribution is from 1.03 to 1.50. [Xn-mM(OCR1R2R3)m]y.(organic solvent)z (I)
Abstract:
An embodiment includes an apparatus comprising: an out-of-band cryptoprocessor including secure non-volatile storage that couples to a root index, having a fixed address, and comprises first and second variables referenced by the root index; and semiconductor integrated code (SIC) including embedded processor logic to initialize a processor and embedded memory logic to initialize a memory coupled to the processor; wherein (a) the SIC is to be executed responsive to resetting the processor and prior to providing control to boot code, and (b) the SIC is to perform pre-boot operations in response to accessing at least one of the first and second variables. Other embodiments are described herein.
Abstract:
An isoprene or butadiene cis 1,4-selective polymerization catalyst system together with its polymerization method is provided. This catalyst system is composed of NCN-imine pincer type rare earth metal complex of formula [2,6-(CH═N—R1)2-4-R2-1-C6H2]LnX2(THF)n and alkylating reagent. In an hydrocarbon solvent or under bulk conditions, at a polymerization temperature in a range of −20-120° C., the conjugated diene is polymerized by using the catalyst system, to produce polyisoprene and polybutadiene having controllable number-average molecular weight, molecular weight distribution of 3.0 or less than, and cis 1,4-content of 95% or more, even 99% or more. The crude rubber and vulcanized rubber of the polyisoprene have high strength, stretching crystallization capability and transparency.
Abstract:
An isoprene or butadiene cis 1,4-selective polymerization catalyst system together with its polymerization method is provided. This catalyst system is composed of NCN-imine pincer type rare earth metal complex of formula [2,6-(CH═N—R1)2-4-R2-1-C6H2]LnX2(THF)n and alkylating reagent. In an hydrocarbon solvent or under bulk conditions, at a polymerization temperature in a range of −20-120° C., the conjugated diene is polymerized by using the catalyst system, to produce polyisoprene and polybutadiene having controllable number-average molecular weight, molecular weight distribution of 3.0 or less than, and cis 1,4-content of 95% or more, even 99% or more. The crude rubber and vulcanized rubber of the polyisoprene have high strength, stretching crystallization capability and transparency.