Abstract:
The invention relates to η5:η1-cyclopentadienylidene-phosphorane constrained geometry complexes of rare earth metals, abbreviated to η5:η1-CpPC-CGC, method for production and use of same. The η5:η1-CpPC-CGCs correspond to the general formula (1), wherein SE=Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu; X=independently of one another, a mono-anionic diorganoamido-, bistrimethylsilylamido-, halogenido-, alkyl-, aryl-, alkoxo-, aryloxo- or alkylaluminate (AlR4−) substituent; L=neutral ligand (PR3, NR3, pyridine), solvent molecule (THF, ether, DMF, DMSO, HMPT, tetrahydropyran THP, tetrahydrothiofuran THT); R=alkyl with up to 1-10 C atoms or mono- or polycyclical aryl with 6 to 20 C atoms; R1, R4=independently of one another H or methyl; R2, R3=independently of one another, H or methyl or tertiary butyl or together a substituted cycloalkyl group; R5, R6=methyl, n-butyl, tertiary butyl or phenyl; R7, R8=independently of one another H, trimethylsilyl, alkyl with 1-10 C atoms or mono- or polycyclical aryl with 6 to 20 C atoms, and m=0, 1, 2 or 3.
Abstract translation:本发明涉及& 5>稀土金属的1-环戊二烯基 - 正磷烷约束几何配合物,缩写为& e> 1-CpPC-CGC,其生产和使用方法。 其中SE = Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho等于通式(1) Er,Tm,Yb或Lu; X =彼此独立,单阴离子二有机基酰胺基,双三甲基甲硅烷基氨基 - ,卤代 - ,烷基 - ,芳基 - ,烷氧基 - ,芳氧基 - 或烷基铝酸盐(AlR 4 - )取代基; L =中性配体(PR3,NR3,吡啶),溶剂分子(THF,醚,DMF,DMSO,HMPT,四氢吡喃THP,四氢噻呋喃THT); R =具有至多1-10个C原子的烷基或具有6至20个C原子的单环或多环芳基; R1,R4 =彼此独立地为H或甲基; R2,R3彼此独立地为H或甲基或叔丁基或一起取代的环烷基; R 5,R 6 =甲基,正丁基,叔丁基或苯基; R 7,R 8彼此独立地为H,三甲基甲硅烷基,具有1-10个C原子的烷基或具有6至20个C原子的单环或多环芳基,m = 0,1,2或3。
Abstract:
The invention provides a microencapsulated Lewis acid characterized in that a Lewis acid is supported through coordinate bonds on microcapsules formed of an organic polymer as a novel Lewis acid supported on a polymer in order to overcome the technical limit of conventional catalysts supported on polymers and in addition, to solve problems attendant upon the preparation of a reaction system and separation and recovery from reaction products about Lewis acid catalysts having great industrial usefulness.
Abstract:
Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocalization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.
Abstract:
The invention relates to a multinuclear metallocene catalyst of general formula (1); wherein Y and Y′ are the same or different and independently selected from a C1-20 linear hydrocarbyl group; C1-20 branched hydrocarbyl group; C1-20 cyclic hydrocarbyl group; a C1-30 aryl group and a C1-30 substituted aryl group; L and L′ are the same or different and each is an electron-donating group independently selected from the elements of Group 15 of the Periodic Table; Q and Q′ are the same or different and independently selected from hydrogen, a C1-30 alkyl group and a C1-30 aryl group; M″ is a metal selected from Group 3, 4, 5, 6, 7, 8, 9 and 10 elements and from lanthanide series elements of the Periodic Table; Z is selected from the group consisting of hydrogen; a halogen element; a C1-20 hydrocarbyl group; C1-20 alkoxy group and a C1-20 aryloxy group; B and B′ are the same or different and each is a half sandwich metallocene compound, with B being represented by Formula 2 and B′ being represented by Formula 3: W-M-Xx (Formula 2), W′-M′-X′x′, (Formula 3) wherein: W and W′ are the same or different and independently a ligand compound having a cyclo pentadienyl skeleton selected from the group consisting of cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl and substituted fluorenyl; M and M′ are the same and each is independently selected from the group consisting of scandium; yttrium; lanthanoid series elements; titanium; zirconium; hafnium; vanadium; niobium; and tantalum; X and X′ are the same or different and each is selected from the group consisting of hydrogen; a halogen element; a C 1-20 hydrocarbyl group, C1-20 alkoxy group; and C1-20 aryloxy group; x and x′ are independently integers from 0 to 3; z is an integer from 1 to 5; n, n′ are independently 0 or 1, with 1≦(n+n′)≦2. The invention further relates to a method to prepare said multinuclear metallocene catalyst compound. The invention further relates to a catalyst system and to a process for the polymerisation of olefins.
Abstract:
A cationic Group 3 or Lanthanide metal complex for coordination polymerization of olefins is disclosed. The precursor metal complex is stabilized by an anionic multidentate ancillary ligand and two monoanionic ligands. The ancillary ligand and the transition metal form a metallocycle having at least five primary atoms, counting any null-bound cyclopentadienyl group in the metallocycle as two primary atoms. Olefin polymerization is exemplified.
Abstract:
The present invention relates to a new catalyst based on allyl complexes of the rare earths, of general formula [(C3R15)rM1(X)2−r(D)n]+[M2(X)p(C6H5−qR2q)4−p]− (I), to the preparation of this new catalyst, and to its use for the polymerization of unsaturated compounds, particularly of conjugated dienes, in solution and in the gas phase.
Abstract:
Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocalization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.
Abstract:
Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocalization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.
Abstract:
The present invention relates to a process for manufacturing ultra high molecular weight polymers by means of polymerization and co-polymerization of olefins using novel bridged metallocene catalysts as well as their catalyst systems.
Abstract:
Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocatization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.