Abstract:
The invention relates to methods and arrangements for channel balancing of a wavelength division multiplexed optical signal. Channel balancing according to the invention is performed by using a resonator that provides a selection region in which a selected channel has a substantially increased poser density relative to channels out of resonance. The selected channel is attenuated a desired amount, i.e. a desired amount of power is removed therefrom, by adjusting the properties of the selection region. In a preferred embodiment, attenuation is achieved by adjusting the selection region such that destructive interference is obtained for the selected channel in a fiber carrying tile multiplexed optical signal.
Abstract:
A method and a corresponding device for determining nominal mechanical data for an electronic device by automatic image processing of a digital image of a specimen of said electronic device. In the method, an object in said digital image, which object corresponds to said specimen, is identified and appearance data for the appearance of the identified object are determined. Then, at least some of the determined appearance data are compared with a stored set of nominal appearance data, which nominal appearance data are based on a prior knowledge of appearances of electronic devices, and at least some nominal appearance data of the set of nominal appearance data are selected. Finally, the nominal mechanical data of the electronic device is determined in accordance with the selected nominal appearance data and at least some of the determined appearance data.
Abstract:
The invention is a spectrally selective optical coupler with a new geometry and a new principle of action. An optical coupler according to the invention includes an optical waveguide and an external resonator. In the waveguide, there is provided a deflector that is operative to deflect light of a predetermined wavelength into the external resonator. Coupling is enhanced by the deflected wavelength being resonant in the external resonator.
Abstract:
A method and a device for contactless inspection of objects on a substrate, by means of an inspection device during relative motion between the substrate and the inspection device, wherein the following steps are performed by the method; generating a first image comprising object height information by illuminating at least a portion of the substrate comprising one or more objects by means of first radiator and imaging at least one of said one or more objects illuminated by said first radiator onto a two-dimensional matrix sensor having a portionwise addressable matrix of pixel elements; generating a second image comprising object area information by illuminating at least a portion of the substrate comprising one Or more objects by means of second radiator and imaging at least one of said one or more objects illuminated by said second radiator onto said sensor; extracting the object height information, by means of said sensor, from said first image; and extracting the object area information, by means of said sensor, from said second image.
Abstract:
The invention relates to methods and arrangements for channel balancing of a wavelength division multiplexed optical signal. Channel balancing according to the invention is performed by using a resonator that provides a selection region in which a selected channel has a substantially increased poser density relative to channels out of resonance. The selected channel is attenuated a desired amount, i.e. a desired amount of power is removed therefrom, by adjusting the properties of the selection region. In a preferred embodiment, attenuation is achieved by adjusting the selection region such that destructive interference is obtained for the selected channel in a fibre carrying tile multiplexed optical signal.
Abstract:
A method of establishing transmission of light through a chirped Bragg-reflector, a method of analyzing the power spectrum of a light signal using a chirped Bragg-reflector, and an arrangement for analyzing the power spectrum of a light signal. The Bragg-reflector reflects, in an unperturbed state, essentially all incident light within a predefined wavelength range. The methods include the steps of directing the light to be analyzed into an input end of a light guiding structure, such as an optical fiber, which light guiding structure is provided with a Bragg-reflector, and sending an acoustic pulse along the light guiding structure, thereby effectively lowering the reflectance of the Bragg-reflector for a certain wavelength at a certain time. By monitoring the light thus transmitted through the Bragg-reflector, a power spectrum analysis of the incident light is obtained.