Abstract:
An antenna device for a portable terminal includes: a ground pattern provided on one surface of a circuit board; a first antenna pattern configured to resonate at a first frequency band and provided on an opposite surface of the circuit board; and a second antenna pattern configured to resonate at a second frequency band different from the first frequency band and arranged along a periphery of the ground pattern. The second antenna pattern is a zeroth order mode resonator including a plurality of capacitors and a plurality of inductors. The antenna device easily secures the operation characteristics of different operation frequency bands and contributes to miniaturization of the portable terminal. Thus, a user can conveniently carry and use the portable terminal.
Abstract:
A method for fabricating an antenna device of a mobile communication terminal, the method including selecting radiation patterns according to a usable frequency band, selecting and fabricating magneto dielectric modules for adjusting resonance frequencies of the selected radiation patterns, selecting and fabricating dielectric modules for adjusting resonance frequency of the selected radiation patterns, selecting and fabricating a radiation pattern having a number of resonance frequencies required for the terminal from among the radiation patterns selected in the pattern selection step, and selecting at least one of the magneto dielectric modules and the dielectric modules and installing it in the radiation pattern to tune a resonance frequency of the radiation pattern to the resonance frequency required for the terminal.
Abstract:
An antenna apparatus allows for internal impedance matching by employing an internal matching device therein. The antenna apparatus includes a board body formed of a dielectric material and having a flat structure. The antenna apparatus also includes an antenna device disposed on an upper surface of the board body, and the internal matching device disposed on a lower surface of the board body. The antenna device extends from a feed point and has a first impedance. The internal matching device is connected to the antenna device and has a second impedance used for matching the first impedance with a reference impedance. The antenna device and the internal matching device resonate at the reference impedance in a specific frequency band when a voltage is supplied through the feed point.
Abstract:
A method for fabricating an antenna device of a mobile communication terminal, the method including selecting radiation patterns according to a usable frequency band, selecting and fabricating magneto dielectric modules for adjusting resonance frequencies of the selected radiation patterns, selecting and fabricating dielectric modules for adjusting resonance frequency of the selected radiation patterns, selecting and fabricating a radiation pattern having a number of resonance frequencies required for the terminal from among the radiation patterns selected in the pattern selection step, and selecting at least one of the magneto dielectric modules and the dielectric modules and installing it in the radiation pattern to tune a resonance frequency of the radiation pattern to the resonance frequency required for the terminal.
Abstract:
A built-in antenna for a portable terminal is provided. The built-in antenna includes a substrate including a ground region and a non-ground region, an antenna radiator formed in a pattern with a preset shape within the non-ground region of the substrate, at least one sub-radiation pattern formed in a pattern type while including a preset spacing distance from the antenna radiator, and a conductive plate with a preset height, electrically connecting the sub-radiation pattern to the antenna radiator and/or the sub-radiation pattern.
Abstract:
An apparatus and method for adjusting an operating frequency of a multi-band antenna and a system supporting the same in a wireless communication system are provided, in which a plurality of shorting pins spaced from a radiation patch by difference distances, and a switch connects one of the shorting pins to the radiation patch.
Abstract:
An antenna device of a mobile terminal having improved performance by utilizing a metal object located in proximity to the antenna device as an antenna radiator is provided. The antenna device includes an antenna pattern connected to a feeder and a ground line, and a metal component positioned on the antenna pattern and including a metal that forms an antenna radiator.
Abstract:
An antenna device for a portable terminal includes: a ground pattern provided on one surface of a circuit board; a first antenna pattern configured to resonate at a first frequency band and provided on an opposite surface of the circuit board; and a second antenna pattern configured to resonate at a second frequency band different from the first frequency band and arranged along a periphery of the ground pattern. The second antenna pattern is a zeroth order mode resonator including a plurality of capacitors and a plurality of inductors. The antenna device easily secures the operation characteristics of different operation frequency bands and contributes to miniaturization of the portable terminal. Thus, a user can conveniently carry and use the portable terminal.
Abstract:
A built-in antenna for a portable terminal is provided. The built-in antenna includes a substrate including a ground region and a non-ground region, an antenna radiator formed in a pattern with a preset shape within the non-ground region of the substrate, at least one sub-radiation pattern formed in a pattern type while including a preset spacing distance from the antenna radiator, and a conductive plate with a preset height, electrically connecting the sub-radiation pattern to the antenna radiator and/or the sub-radiation pattern.
Abstract:
An antenna feed line for a portable terminal is provided that includes first films in which shielding lines are formed lengthwise and a second film disposed between the first films and having at least one pair of signal lines formed lengthwise. The antenna feed line is a flexible printed circuit having a layered structure of the first films and the second film, while the signal lines are shielded by the shielding lines. Use of the antenna feed line allows a stable connection to be maintained in spite of external shock, and signal loss during transmission/reception can be reduced. Moreover, the antenna feed line can be easily fixed inside the portable terminal.