Abstract:
The method and apparatus have application to the compensation of transient signals produced on reading a data storage device with a magneto-resistive head due to thermal contact with asperities on the data storage medium. Preferably, the data channel employs partial-response maximum-likelihood detection. The method compensates for an additive signal in a data signal and comprises the steps of: detecting the contribution to said data signal by said additive signal; initially compensating the data signal by maintaining a DC offset in said data signal, the initial level of said DC offset being set in dependence on the detected contribution; and while compensating the data signal, detecting when the compensated data signal exceeds a predetermined threshold and varying the set level of said DC offset in dependence upon said detection.
Abstract:
Precision of multi-stage digital signal processing is increased by preserving least significant bits of one or more output samples of a particular processing stage, having finite word widths, while avoiding the loss of most significant bits. The technique is applicable to one or more stages of multi-stage digital signal processing, thereby increasing precision therein and the signal-to-noise ratio. A plurality of output samples are calculated using a plurality of input samples, and the dynamic range of one or more of the output samples is decreased if the output sample can be represented in a smaller dynamic range without losing a significant bit. The input samples of a particular stage, obtained from the output samples of a previous stage, may further be normalized so that the input samples are represented in the same dynamic range before being processed.