Abstract:
A device for use in capturing or collecting debris found in blood vessels or other body lumens. The devices can be fabricated from a tube and include longitudinally and circumferentially extending members. The device can further embody structure that provides enhanced radial opening and angular resistance to collapse and structure for absorbing or modifying forces applied thereto by an operator.
Abstract:
A sterile tool for crimping a stent onto a balloon catheter is disclosed. The stent crimping tool includes two major components, a cylindrical body having external threads and a rotating collar with internal threads engaging the external threads. The collet end of the cylindrical body is split into segmented jaws that are biased to flare outward in an open state. A stent loaded onto a balloon catheter and situated inside the open segmented jaws can undergo a crimping operation when the collar is rotated and advances toward the flared open segmented jaws. When the collar engages the segmented jaws, the jaws are forced to converge and close onto the stent-catheter assembly thereby crimping the stent onto the balloon catheter.
Abstract:
A stent crimping tool for firmly and uniformly crimping a conventional or radioactive stent onto a balloon catheter is constructed from a proximal section rotatably connected to a distal section, the two cylindrical sections forming the transparent housing. A cylindrical cavity having a tapered end is formed into the proximal section. Inside the cavity is affixed a transparent cylindrical collar having radial slots leading to a central passage extending along its axis, and a conical end that fits into the tapered end. Teeth made of trapezoidal shape flat plates each having an angular proximal edge and a radiused edge slide into their respective slots in the collar. A transparent screw feed having a hollow core and a slotted head that receives the radiused edge of each tooth/plate is threaded to the distal section. A balloon catheter is passed through a passage in the proximal section and the collar and an uncrimped stent positioned in the hollow core of the screw is loaded thereon. Rotating the distal section of the housing advances the screw and plates toward the tapered cavity, which has angled walls that force the plates to converge radially inward. This convergence causes the radiused edges of the plates to collectively crimp the stent onto the balloon.
Abstract:
A slidably-engageable device for enabling effective crimping of an intravascular stent onto a balloon catheter assembly. The stent crimping device includes at least one compressible and releasable loop portion which enables the stent and catheter assembly to be supported thereon, and is compressible radially inwardly to effectively crimp the stent onto the balloon catheter assembly.
Abstract:
A stent crimping tool for firmly and uniformly crimping a stent onto a balloon catheter. The stent crimping tool is constructed of three orthogonally arranged semi-circular shaped cams rotatably mounted on a common base. Two cams are disposed horizontally side-by-side and one cam is vertically disposed. Rotation of the three cams is synchronized by interacting racks on each cam. A groove is formed into the outer circumference of each cam and the three cams are arranged on the base, which also includes a groove, to collectively form an axial space in which a stent-catheter assembly is inserted. Rotation of the cams draws the uncrimped stent and catheter into the axial space in which the stent is crimped onto the balloon catheter by the compressive forces exerted by the grooves of the cams and the base.
Abstract:
A pivotally-engageable device for enabling uniform and tight crimping of an intravascular stent onto a balloon catheter assembly. The stent crimping device includes at least one releasable loop portion that enables the stent and catheter assembly to be supported therein. The ends of the loop portion are moved in opposite directions thereby reducing the size of loop radially inwardly to uniformly and tightly crimp the stent onto the balloon catheter assembly.
Abstract:
A slidably-engageable device for enabling effective crimping of an intravascular stent onto a balloon catheter assembly. The stent crimping device includes at least one compressible and releasable loop portion which enables the stent and catheter assembly to be supported thereon, and is compressible radially inwardly to effectively crimp the stent onto the balloon catheter assembly.
Abstract:
A hand held tool for crimping a stent onto a balloon of a catheter is disclosed. The stent crimping tool is operated in one hand by squeezing two plates together while simultaneously displacing the plates linearly to crimp and roll the stent held between the plates. Specifically, the crimping tool includes a base plate with two bosses through which respective pins pass linking the base plate to a compression plate. The compression plate has elongated diameter openings at opposite sides thereof to receive the pins. With the elongated diameter openings, the compression plate can pivot at the pins and translate linearly relative to those pins thus enabling the rolling action during the crimping process. A compression profile pad and a tapered profile pad are attached to the crimping areas of the plates to grip and together apply pressure to the uncrimped stent held therebetween. The pads may include specific contours in order to impart a desired profile to the crimped stent.
Abstract:
A device and method for enabling substantially uniform and tight crimping of an intravascular stent onto a balloon catheter assembly. The device has a base portion having an intermediate portion and pivoting arm portions attached thereto. A loop portion is attached at its end portions to the pivoting handle portions. The loop portion has a compressible and generally cylindrical opening which is substantially uniformly compressible radially inwardly upon pivoting the arm portions downwardly from the intermediate portion. This substantially uniformly and tightly crimps the stent onto the catheter portion which is inserted therein.
Abstract:
A tool and method for enabling substantially uniform and tight crimping of an intravascular stent onto a balloon catheter assembly. The crimping tool is constructed from a rigid cylindrical chassis sealed at both ends, having a hollow interior containing an elastic tube that partially occupies the interior. A piston abuts the elastic tube and forms a hermetically sealed chamber behind the piston and a closed end ofthe chassis. A port connected to an indeflator and positioned on the chassis provides an inlet into and out of the chamber. A stent that is loaded onto the balloon portion of the catheter is inserted through a central opening in another end of the chassis to position the stent catheter assembly within the axial space inside the elastic tube. The indeflator injects a fluid into the chamber thereby increasing its pressure which in turn displaces the piston into the elastic tube compressing the tube longitudinally. The elastic tube decreases in length and expands in thickness radially to crimp the stent onto the balloon catheter. Once pressure is relieved from the chamber, the piston moves away from the elastic tube, which restores to its original shape. The crimped stent and catheter can then be withdrawn. The piston may be driven by a power screw in place of fluid pressure.