Abstract:
The disclosure pertains to a method and apparatus for converting a standard anaerobic septic tank system to an aerobic system where the effluent discharged has a high level of quality, sufficient to meet or exceed all known national and state standards. The method provides a series of steps that are used to convert a pre-existing anaerobic septic tank to a highly efficient aerobic system. Additionally, there has been provided an apparatus for individual home wastewater treatment that is designed for new construction units. The conversion and new construction units are highly effective in geographical regions where the native soils have inadequate percolating capacity and also areas in which the groundwater table is very near the surface. Both of these units include an aeration and a clarifier insert with the capability of adding an optional chlorine chamber which dispenses chlorine into the effluent line in its final stages. Although only a single clarifier unit is used in each installation, provision is made for a plurality of clarifier insert configurations, any of which will meet the high quality standards indicated above.
Abstract:
A method and apparatus concentrates, collects and removes heavy metals, other cations, and anions from media permitting generation of electrical fields. The heavy metals and other cations are electrochemically concentrated and precipitated for rapid removal from the aqueous media. The media, which may be aqueous, soils or wastes, is filtered and passed through a cation or anion exchange resin beds. Metals or anions are captured and held in the resin beds. Current is then applied through the resin beds using opposing electrodes of opposite polarity. In the metal removal units, heavy metals and other cations are concentrated around the negative electrode and lifted to a top of the electrode chamber using hydrogen gas lift. The concentrated solution of heavy metals and cations are removed from the chamber above the negative electrode and are circulated to provide additional time for growth and precipitation. Once in a crystalline structure or precipitated form, the elemental metals and metal hydroxides are separated from the aqueous phase using a trap, which retains the crystallates and precipitates. The treated liquid is returned to the chamber beneath the positive electrode for recycling. The anions are concentrated in a similar manner and removed in soluble form from the aqueous media.
Abstract:
A method and apparatus concentrates, collects and removes heavy metals, other cations, and anions from media permitting generation of electrical fields. The heavy metals and other cations are electrochemically concentrated and precipitated for rapid removal from the aqueous media. The media, which may be aqueous, soils or wastes, is filtered and passed through a cation or anion exchange resin beds. Metals or anions are captured and held in the resin beds. Current is then applied through the resin beds using opposing electrodes of opposite polarity. In the metal removal units, heavy metals and other cations are concentrated around the negative electrode and lifted to a top of the electrode chamber using hydrogen gas lift. The concentrated solution of heavy metals and cations are removed from the chamber above the negative electrode and are circulated to provide additional time for growth and precipitation.