Abstract:
The zipper for a reclosable package wherein the zipper includes fragrance-carrying oil within an internal zipper volume or storage volume thereby confining the scent while the zipper and the package are closed. When the zipper is opened, the scent is allowed to escape to the consumer.
Abstract:
The present disclosure relates to a high burst slider zipper which allows for bottom filling of reclosable packages, such as large bags, and further provides increased resistance to damage from the dropping or shock loading of the filled package. This is achieved by providing a peel seal or other frangible or separable connection between the zipper profiles, and by sealing a portion of one of the flanges to itself by a hard seal above the peel seal. This causes the external forces on a bag from bottom filling or shock loading to be directed toward the hard seal and further directed so as to cause a shear force against the peel seal, thereby increasing the resistance of the package to external forces.
Abstract:
The disclosure relates to a zipper for a reclosable package wherein the zipper includes fragrance-carrying oil within an internal zipper volume or storage volume thereby confining the scent while the zipper and the package are closed. When the zipper is opened, the scent is allowed to escape to the consumer.
Abstract:
The disclosure relates to a method and apparatus for manufacturing a package with a rigid or semi-rigid container and a polymeric or plastic header with a reclosure, such as a zipper. The rigid or semi-rigid container is typically provided in a stack of flat containers. The header is sealed, glued or otherwise secured to the containers. The container, typically inverted, is filled, and the bottom is formed by folding and sealing the bottom portion of the container.
Abstract:
A process for manufacturing reclosable bags (30) by forming a film (50) includes moving the film (50) and attaching to the film (50) sequentially and crosswise with reference to the direction of movement of the film (50), a fastener (1) including a first strip (2) supporting at least one reclosable profile (10) engaged with another reclosable profile (12) that is complementary thereto and supported by a second strip (4) or a part of the first strip (2), which will subsequently be attached to the film (50). Each strip (2, 4) includes at least one web (6, 8) extending substantially mostly sideways on one side of the profiles (12). The above arrangements make possible special fasteners (1) that include sliders (9), gasket membranes (26), fasteners inverted within the bag (30), peel seals (18, 20, 21) and hinged fasteners (1).
Abstract:
The present disclosure relates to a high burst slider zipper which allows for bottom filling of reclosable packages, such as large bags, and further provides increased resistance to damage from the dropping or shock loading of the filled package. This is achieved by providing a peel seal or other frangible or separable connection between the zipper profiles, and by sealing a portion of one of the flanges to itself by a hard seal above the peel seal. This causes the external forces on a bag from bottom filling or shock loading to be directed toward the hard seal and further directed so as to cause a shear force against the peel seal, thereby increasing the resistance of the package to external forces.
Abstract:
A reclosable vacuum storage bag that can be hermetically sealed by flat resealable means that extend across the full width of the bag. The flat resealable means are designed to provide a barrier to prevent ambient air from leaking into the evacuated interior volume of the bag. The storage bag is also provided with a plastic zipper. The flat resealable means can be arranged on the product side of the zipper, on the user side of the zipper, or in between two zippers installed in the storage bag.
Abstract:
Methods of manufacturing reclosable packages having a slider-operated string zipper covered by a tamper-evident shroud that is provided with at least one opening that at least partially exposes the slider. In accordance with one method, openings are formed in a web of packaging material that is folded, placed over the slider-operated string zipper, and attached to the receptacle walls to form a shroud. Preferably, the openings are sized, shaped and situated so that they frame the slider on both sides of the shroud. In accordance with another method, a reclosable package having a slider-operated string zipper and a shroud with openings that at least partially expose the slider can be formed using a single web of packaging material that is folded and sealed to form a shroud that covers the string zipper.
Abstract:
The present disclosure relates to a high burst slider zipper which allows for bottom filling of reclosable packages, such as large bags, and further provides increased resistance to damage from the dropping or shock loading of the filled package. This is achieved by providing a peel seal or other frangible or separable connection between the zipper profiles, and by sealing a portion of one of the flanges to itself by a hard seal above the peel seal. This causes the external forces on a bag from bottom filling or shock loading to be directed toward the hard seal and further directed so as to cause a shear force against the peel seal, thereby increasing the resistance of the package to external forces.
Abstract:
The present disclosure relates to a high burst slider zipper which allows for bottom filling of reclosable packages, such as large bags, and further provides increased resistance to damage from the dropping or shock loading of the filled package. This is achieved by providing a peel seal or other frangible or separable connection between the zipper profiles, and by sealing a portion of one of the flanges to itself by a hard seal above the peel seal. This causes the external forces on a bag from bottom filling or shock loading to be directed toward the hard seal and further directed so as to cause a shear force against the peel seal, thereby increasing the resistance of the package to external forces.