摘要:
A direct ocular virtual 3D workspace (laser-based 3D display system) utilizes traditional binocular methods of image composition to produce a 3D workspace in the observers' psyche. This direct ocular virtual 3D workspace is implemented such that in moving environments, such as on a ship or vehicle, the immersion of the individual into the display environment will not result in vertigo and/or motion sickness. This is resolved by utilizing a system that accomplishes eye-tracking, and produces the display image within the eye by means of laser projection. Two images can thus be projected into an individual's eyes to produce a 3D holographic-like image space. The individual will still maintain partial vision, resulting in a holographic-like display in space that the observer can look through. The images provided to multiple collaborators/users are geometrically corrected for each collaborator.
摘要:
The present disclosure includes various apparatus, system, and method embodiments for vehicle recovery. One embodiment includes an inflatable member for impact of a vehicle thereon, an inflation source for inflating the inflatable member, and where the inflatable member and inflation source are housed in a portable package.
摘要:
The present disclosure includes various apparatus and method embodiments for vehicle recovery. One embodiment includes at least one inflatable member having a target area for impact of a vehicle thereon and wherein the at least one inflatable member is inflated with a fluid provided by an inflation source.
摘要:
A multiplexing technique for optical communications used to create a pseudo-random communications signal in the optical domain such that only the sender and/or receiver can decode the signal. The multiplexing technique may include one or more information-bearing optical signals combined with one or more dynamic pseudo-randomly-generated optical signals to create a combined dynamic subcarrier multiplexed privacy-protected output signal. The information-bearing signal is protocol-independent and can be of mixed type, such as RF, analog, and/or digital. Only the receiver of the privacy-protected signal may decode the pseudo-random signal so as to disclose the information-bearing signal. The present invention may use dynamic subcarrier multiplexing selection based on standard digital encryption and the use of optical range time to ensure synchronization.
摘要:
A direct ocular virtual 3D workspace (laser-based 3D display system) utilizes traditional binocular methods of image composition to produce a 3D workspace in the observers' psyche. This direct ocular virtual 3D workspace is implemented such that in moving environments, such as on a ship or vehicle, the immersion of the individual into the display environment will not result in vertigo and/or motion sickness. This is resolved by utilizing a system that accomplishes eye-tracking, and produces the display image within the eye by means of laser projection. Two images can thus be projected into an individual's eyes to produce a 3D holographic-like image space. The individual will still maintain partial vision, resulting in a holographic-like display in space that the observer can look through. The images provided to multiple collaborators/users are geometrically corrected for each collaborator.