Automatic image analysis and quantification for fluorescence in situ hybridization
    1.
    发明申请
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US20080137937A1

    公开(公告)日:2008-06-12

    申请号:US11607557

    申请日:2006-11-30

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    3.
    发明授权
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US08019134B2

    公开(公告)日:2011-09-13

    申请号:US11607557

    申请日:2006-11-30

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    4.
    发明申请
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US20120237106A1

    公开(公告)日:2012-09-20

    申请号:US13199412

    申请日:2011-08-29

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。