Abstract:
The present disclosure facilitates the interoperability between different local applications. Related local data objects are referenced via global objects or reference containers within a global data model or a global address space of an integration solution. The present disclosure assumes that the integration solution is per default in a consistent state, e.g., an engineered or initially configured global address space is regarded as consistent, and all software components that operate within this space assume that the information they access is valid and likewise consistent. The local applications are the only components that can interact with the global address space and introduce invalidations, they are continuously monitored for changes. Invalidation and subsequent synchronization or restoration of consistency is performed upon a particular triggering event related to a change in a local application object (such as an insertion or removal of an object or a modification of an attribute thereof) or related to a changing application or adapter status (component shutdown/startup).
Abstract:
A system and method of converting a file is disclosed that is based on a first standard to a file that is based on a second standard. The concerned standards can be IEC 61970 and IEC 61850 or their equivalents. For conversion, a file based on IEC 61970 is coded according to CIMXML (RDF Schema), and a file in IEC 61850 is coded according to SCL (XML Schema). The data in each file is modelled by using a UML model for the corresponding standard. The method includes the automatic generation of mapping rules that can be based on the UML models of the two standards and the mappings between the two standards. The method further converts the identified elements by using the generated mapping rules. Finally, post-processing rules can be applied to the converted elements to generate the file, based on the second standard.
Abstract:
The present disclosure facilitates the interoperability between different local applications. Related local data objects are referenced via global objects or reference containers within a global data model or a global address space of an integration solution. The present disclosure assumes that the integration solution is per default in a consistent state, e.g., an engineered or initially configured global address space is regarded as consistent, and all software components that operate within this space assume that the information they access is valid and likewise consistent. The local applications are the only components that can interact with the global address space and introduce invalidations, they are continuously monitored for changes. Invalidation and subsequent synchronization or restoration of consistency is performed upon a particular triggering event related to a change in a local application object (such as an insertion or removal of an object or a modification of an attribute thereof) or related to a changing application or adapter status (component shutdown/startup).
Abstract:
A system and method of converting a file is disclosed that is based on a first standard to a file that is based on a second standard. The concerned standards can be IEC 61970 and IEC 61850 or their equivalents. For conversion, a file based on IEC 61970 is coded according to CIMXML (RDF Schema), and a file in IEC 61850 is coded according to SCL (XML Schema). The data in each file is modelled by using a UML model for the corresponding standard. The method includes the automatic generation of mapping rules that can be based on the UML models of the two standards and the mappings between the two standards. The method further converts the identified elements by using the generated mapping rules. Finally, post-processing rules can be applied to the converted elements to generate the file, based on the second standard.
Abstract:
The present disclosure is concerned with generating a unique representation of a physical asset from a plurality of datasets representing information relating to the physical asset. Each dataset is generated by a system that acquires the dataset in a system-specific format. Each dataset that includes information about the attributes of a physical asset is mapped to a corresponding system-specific global dataset, based on a global data model. The global system-specific datasets generated are merged together to generate a global dataset, based on the global data model. The global dataset therefore uniquely represents the physical asset.
Abstract:
The present disclosure is concerned with generating a unique representation of a physical asset from a plurality of datasets representing information relating to the physical asset. Each dataset is generated by a system that acquires the dataset in a system-specific format. Each dataset that includes information about the attributes of a physical asset is mapped to a corresponding system-specific global dataset, based on a global data model. The global system-specific datasets generated are merged together to generate a global dataset, based on the global data model. The global dataset therefore uniquely represents the physical asset.