Abstract:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
Abstract:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
Abstract:
A liquid level detection method includes capturing an image of a liquid surface, a structural surface, and graduation markings provided on the structural surface using an image-capturing device to thereby obtain an initial image. Subsequently, the initial image is processed so as to generate a processed image, and a level reference value of the liquid surface is obtained from the processed image. The level reference value represents a height of the liquid surface in terms of inherent characteristics of the processed image. Lastly, a liquid level of the liquid surface is calculated based on a relative proportional relation among the level reference value, an overall height of the processed image interms of the inherent characteristics of the processed image, and dimensions of any one of the initial and processed images relative to the graduation markings.
Abstract:
A liquid level detection method includes capturing an image of a liquid surface, a structural surface, and graduation markings provided on the structural surface using an image-capturing device to thereby obtain an initial image. Subsequently, the initial image is processed so as to generate a processed image, and a level reference value of the liquid surface is obtained from the processed image. The level reference value represents a height of the liquid surface in terms of inherent characteristics of the processed image. Lastly, a liquid level of the liquid surface is calculated based on a relative proportional relation among the level reference value, an overall height of the processed image in terms of the inherent characteristics of the processed image, and dimensions of any one of the initial and processed images relative to the graduation markings.