Abstract:
A grain-oriented electromagnetic steel sheet is provided which has a low ratio of iron loss in a weaker magnetic field to that in a stronger magnetic field and has special advantage in EI cores and the like. Also provided is a process for producing that steel sheet. The grain-oriented electromagnetic steel sheet is characterized in that its crystal grains of important components are specified in terms of their proportions in number, and the contents of Al, Ti and B, with a forsterite film formed on a surface of the steel sheet. In the process a low-Al silicon slab is heated at below 1,250° C. before hot rolling and the hot-rolled sheet is annealed with a temperature rise in the range of from 5 to 25° C./sec and at a temperature of from about 800 to 1,000 for a period of time of shorter than about 100 seconds.
Abstract:
Manufacturing a grain-oriented electrical steel sheet, a secondary recrystallization step and a forsterite coating forming step are separated into first batch annealing for developing secondary recrystallization and second batch annealing for forming a forsterite coating, with continuous annealing performed between these two steps of batch annealing, to produce a grain-oriented electrical steel sheet that is superior in both magnetic characteristics and coating characteristics.
Abstract:
A grain-oriented electromagnetic steel sheet is provided which has a low ratio of iron loss in a weaker magnetic field to that in a stronger magnetic field and has special advantage in EI cores and the like. Also provided is a process for producing that steel sheet. The grain-oriented electromagnetic steel sheet is characterized in that its crystal grains of important components are specified in terms of their proportions in number, and the contents of Al, Ti and B, with a forsterite film formed on a surface of the steel sheet. In the process a low-Al silicon slab is heated at below 1,250.degree. C. before hot rolling and the hot-rolled sheet is annealed with a temperature rise in the range of from 5 to 25.degree. C./sec and at a temperature of from about 800 to 1,000 for a period of time of shorter than about 100 seconds.
Abstract:
Production of grain-oriented silicon steel sheet, in which the heating temperature of slabs is as low as that in common steels and good magnetic properties are maintained, without applying a nitriding process. The contents of Al, Se and S substantially satisfy formulae (1) and (2), and both or either of formulae (3) and (4):�Al (wt %)!+(5/9){�Se (wt %)!+2.47�S(wt %)!}.ltoreq.0.027 (1)�Se (wt %)!+2.47�S (wt %)!.ltoreq.0.025 (2)0.016.ltoreq.�Al (wt %)!+(5/9){�Se (wt %)!+2.47 �S (wt %)!}(3)0.010.ltoreq.�Al (wt %)! (4)Annealing of the hot rolling sheet is applied at a temperature of about 800.degree. C. or more, and about 1000.degree. C. or below; preferably, cold rolling is applied at about 100.degree. C. or more, using a tandem mill.