Abstract:
A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterized in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analysed and selected from among n protrusions and m cavities, and in that when n+m≧2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
Abstract:
The invention relates to a device for receiving a fluid sample, which is designed such as to form an electrode, such as a counter electrode or a working electrode, in an electrochemical cell. The inventive device comprises an end part having at least one cavity which opens to the exterior via an opening and which is equipped with a base. The invention is characterized in that the aforementioned end part comprises a first electrically-insulating hydrophobic zone which is adjacent to the cavity opening and a second electrically-conducting hydrophilic zone which is adjacent to the first zone and which at least partially covers the base of the cavity, such that, when the end part is immersed in the fluid and then removed therefrom, the cavity retains part of the fluid by means of capillary action.
Abstract:
A rotating optical joint has two organs which are able to rotate independently of one other on a common axis (14). Collimators (18, 20) are mounted directly opposite one another on the organs, in an arrangement such that they permanently provide a variation of the power of the transmitted signal of less than 25%, during relative rotation of the said organs. The total number of collimators (18, 20) is preferably less than or equal to eight. Advantageously, three collimators (20) are mounted on one of the organs and four collimators (18) are mounted on the other organ.
Abstract:
A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterized in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analyzed and selected from among n protrusions and m cavities, and in that when n+m≧2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
Abstract:
The invention relates to a device for receiving a fluid sample, which is designed such as to form an electrode, such as a counter electrode or a working electrode, in an electrochemical cell. The inventive device comprises an end part having at least one cavity which opens to the exterior via an opening and which is equipped with a base. The invention is characterized in that the aforementioned end part comprises a first electrically-insulating hydrophobic zone which is adjacent to the cavity opening and a second electrically-conducting hydrophilic zone which is adjacent to the first zone and which at least partially covers the base of the cavity, such that, when the end part is immersed in the fluid and then removed therefrom, the cavity retains part of the fluid by means of capillary action.
Abstract:
A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterized in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analyzed and selected from among n protrusions and m cavities, and in that when n+m≧2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
Abstract:
A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterised in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analysed and selected from among n protrusions and m cavities, and in that when n+m≧2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
Abstract:
A barrier discharge lamp wherein an ultraviolet radiation flux is emitted by a working gas confined between two coaxial silica tubes connected at both ends. The gas is subjected to electrical pulses supplied by a generator and applied between an inner and an outer electrode including a conductive window. The cooling is provided by a driven air flow, in particular in the tube, by a fan. Its efficacy is enhanced by a radiator associated with the inner electrode, and by a convective working gas flow. The flow is provided not only around the tube in the vicinity of the electrodes, but in an axial plane with channels on either side of the tube at both ends thereof spaced apart from at least one of the electrodes. The invention is applicable to industrial processes and medical treatments using ultraviolet radiation with very small spectral width, and for treating psoriasis and vitiligo.