Abstract:
A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
Abstract:
An apparatus, process and system for treating a hydrocarbon feedstock having a specific gravity differential between components of the feedstock is disclosed and includes a treatment vessel having an inlet for receiving the feedstock. A primary separation container may be located in the treatment vessel to accumulate feedstock to cause a low specific gravity portion of the feedstock to separate and rise to an upper surface of the accumulated feedstock. A secondary separation container may be located in the treatment vessel to receive the collected low specific gravity portion from the primary separation container, to accumulate the collected low specific gravity portion to cause hydrocarbon products to separate and rise to an upper surface of the accumulated low specific gravity portion of the feedstock, producing a hydrocarbon product stream at a product outlet. The operating pressure of the treatment vessel may be regulated to remain within a desired range.
Abstract:
A separation process and system for extracting hydrocarbons from a mixture. In some embodiments, a process for separating a bitumen froth stream containing bitumen froth, water and fine solids into a bitumen enriched froth stream and a water and fine solids stream, comprises: (a) receiving the bitumen froth stream in a concentrator vessel, (b) distributing the bitumen froth stream in the concentrator vessel as a substantially uniform and generally horizontal flow of the bitumen froth stream at a first flow velocity, (c) slowing the bitumen froth stream to a second flow velocity, slower than the first flow velocity, in a separation region of the concentrator vessel to promote separation of the bitumen froth from the water and fine solids, and then (d) collecting a bitumen enriched froth stream and (e) collecting a separate water and fine solids stream. Related embodiments of systems and apparatus may also be provided.
Abstract:
An extraction system and process for extracting bitumen from a slurry containing bitumen, solids and water. The system comprises a cyclone separation facility for separating the slurry into a solids component stream and a bitumen froth stream with the bitumen froth stream including water and fine solids. The bitumen froth stream is then delivered to a froth concentration facility for separating the bitumen froth stream into a final bitumen enriched froth stream, and a water and fine solids stream. The final bitumen enriched froth stream is suitable for further processing. The system of the present invention is preferably mobile so that the cyclone extraction facility and the froth concentration facility can move with the mine face at an oil sands mining site, however, it is also contemplated that the system can be retrofitted to existing fixed treatment facilities to improve the operational efficiency of such fixed facilities.
Abstract:
An extraction system and process for extracting bitumen from a slurry containing bitumen, solids and water. The system comprises a cyclone separation facility for separating the slurry into a solids component stream and a bitumen froth stream with the bitumen froth stream including water and fine solids. The bitumen froth stream is then delivered to a froth concentration facility for separating the bitumen froth stream into a final bitumen enriched froth stream, and a water and fine solids stream. The final bitumen enriched froth stream is suitable for further processing. The system of the present invention is preferably mobile so that the cyclone extraction facility and the froth concentration facility can move with the mine face at an oil sands mining site, however, it is also contemplated that the system can be retrofitted to existing fixed treatment facilities to improve the operational efficiency of such fixed facilities.
Abstract:
An apparatus and process for treating a heavy hydrocarbon feedstock having a specific gravity differential between components of the feedstock is disclosed. The apparatus includes a treatment vessel having an inlet for receiving the feedstock. The apparatus also includes a primary separation container located in the treatment vessel, the primary separation container being operable to accumulate feedstock to cause a low specific gravity portion of the feedstock to separate and rise to an upper surface of the accumulated feedstock. The apparatus also includes a first weir for collecting the low specific gravity portion from the surface of the accumulated feedstock in the primary separation container. The apparatus further includes a first outlet in the primary separation container, the first outlet being operably configured to receive settling solids in the accumulated feedstock and to produce a first discharge stream at the first outlet. The apparatus also includes a secondary separation container located in the treatment vessel to receive the collected low specific gravity portion, the secondary separation container being operable to accumulate the collected low specific gravity portion to cause hydrocarbon products to separate and rise to an upper surface of the accumulated low specific gravity portion of the feedstock. The apparatus further includes a product outlet for collecting the hydrocarbon products from the upper surface of the accumulated low specific gravity portion to produce a hydrocarbon product stream at the product outlet.
Abstract:
A separation process and system for extracting hydrocarbons from a mixture. In some embodiments, a process for separating a bitumen froth stream containing bitumen froth, water and fine solids into a bitumen enriched froth stream and a water and fine solids stream, comprises: (a) receiving the bitumen froth stream in a concentrator vessel, (b) distributing the bitumen froth stream in the concentrator vessel as a substantially uniform and generally horizontal flow of the bitumen froth stream at a first flow velocity, (c) slowing the bitumen froth stream to a second flow velocity, slower than the first flow velocity, in a separation region of the concentrator vessel to promote separation of the bitumen froth from the water and fine solids, and then (d) collecting a bitumen enriched froth stream and (e) collecting a separate water and fine solids stream. Related embodiments of systems and apparatus may also be provided.
Abstract:
A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
Abstract:
An apparatus and process for treating a heavy hydrocarbon feedstock having a specific gravity differential between components of the feedstock is disclosed. The apparatus includes a treatment vessel having an inlet for receiving the feedstock. The apparatus also includes a primary separation container located in the treatment vessel, the primary separation container being operable to accumulate feedstock to cause a low specific gravity portion of the feedstock to separate and rise to an upper surface of the accumulated feedstock. The apparatus also includes a first weir for collecting the low specific gravity portion from the surface of the accumulated feedstock in the primary separation container. The apparatus further includes a first outlet in the primary separation container, the first outlet being operably configured to receive settling solids in the accumulated feedstock and to produce a first discharge stream at the first outlet. The apparatus also includes a secondary separation container located in the treatment vessel to receive the collected low specific gravity portion, the secondary separation container being operable to accumulate the collected low specific gravity portion to cause hydrocarbon products to separate and rise to an upper surface of the accumulated low specific gravity portion of the feedstock. The apparatus further includes a product outlet for collecting the hydrocarbon products from the upper surface of the accumulated low specific gravity portion to produce a hydrocarbon product stream at the product outlet.
Abstract:
An extraction system and process for extracting bitumen from a slurry containing bitumen, solids and water. The system comprises a cyclone separation facility for separating the slurry into a solids component stream and a bitumen froth stream with the bitumen froth stream including water and fine solids. The bitumen froth stream is then delivered to a froth concentration facility for separating the bitumen froth stream into a final bitumen enriched froth stream, and a water and fine solids stream. The final bitumen enriched froth stream is suitable for further processing. The system of the present invention is preferably mobile so that the cyclone extraction facility and the froth concentration facility can move with the mine face at an oil sands mining site, however, it is also contemplated that the system can be retrofitted to existing fixed treatment facilities to improve the operational efficiency of such fixed facilities.