Eddy current technique for predicting burst pressure
    1.
    发明授权
    Eddy current technique for predicting burst pressure 有权
    用于预测爆破压力的涡流技术

    公开(公告)号:US06519535B1

    公开(公告)日:2003-02-11

    申请号:US09587008

    申请日:2000-06-05

    IPC分类号: G01L100

    CPC分类号: B21C51/00 G01N27/9046

    摘要: A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

    摘要翻译: 提供了一种信号处理技术,其将具有关键管道缺陷的管的涡流检查数据与管的预测爆破压力的范围相关联。 该方法可以使用回归技术,优选人造神经网络,将表示关键管道缺陷的原始涡流检查数据与爆破压力的范围直接相关。 或者,该技术将原始涡流检查数据解卷积成一组未失真的信号,每个信号代表管的单独缺陷。 代表关键管道缺陷的未失真缺陷信号与采用回归技术的爆破压力范围有关。

    Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers
    2.
    发明授权
    Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers 失效
    化石燃烧锅炉后期燃烧区物质注入的智能排放控制器

    公开(公告)号:US06507774B1

    公开(公告)日:2003-01-14

    申请号:US09379401

    申请日:1999-08-24

    IPC分类号: G01N3100

    摘要: The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NOx) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

    摘要翻译: 控制来自化石燃烧锅炉的排放物,其中在主燃烧区域之上的物质的注入采用多层前馈人工神经网络,用于建模进入炉上部区域的注入物质分布和离开炉内的排放物之间的静态非线性关系 炉。 多变量非线性约束优化算法使用来自人造神经网络的数学表达式提供最小化给定总物质注入速率的排放水平的最佳物质分布。 基于优化算法的最佳运行条件,每单位减排量的增量物质成本和每单位减排量的开放市场价格,智能排放控制器允许确定是否更具成本效益 通过注入附加物质或通过在公开市场上购买排放量来实现减排的额外增量。 这是化石燃煤电厂运营商特别感兴趣的。 智能排放控制器特别适用于通过选择性引入多种物质输入(如天然气,氨气)来确定化石燃烧锅炉排放的氮氧化物(NOx)和一氧化碳(CO)等污染物的经济性 ,油,水 - 油乳液,煤水浆和/或尿素,以及这些物质的组合)在化石燃烧锅炉的主燃烧区上方。

    Process management using component thermal-hydraulic function classes
    3.
    发明授权
    Process management using component thermal-hydraulic function classes 失效
    使用组件热液压功能类进行流程管理

    公开(公告)号:US5930315A

    公开(公告)日:1999-07-27

    申请号:US989360

    申请日:1997-12-12

    IPC分类号: G21D3/04

    摘要: A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

    摘要翻译: 一种过程管理专家系统,其中在诸如泵之类的部件发生故障的情况下,用于确定系统重新对准程序,例如以在线速度旁路故障部件以维持过程全部或部分能力的操作或提供 在隔离故障部件的同时安全关闭系统。 专家系统在组件级别使用热液压功能等级来分析意外的以及预期的组件故障,以提供推荐的操作员动作序列。 每个组件根据其热液压功能以及该功能的通用和组件特定特性进行分类。 使用故障部件及其热液压级的诊断,专家系统分析采用通用热液压第一原理进行。 本发明的一个方面采用基于物理的基于物理的前向搜索,其主要在故障组件的下游,以及主要在服务组件的上游指导的后续的后向搜索。 根据质量,动量和能量传递的三个热液压功能,在知识库中定义了一般类别的组件,并且用于根据故障组件引起的热 - 液压功能不平衡来确定组件配置的可能重新对准。 每个重新配置到新的配置都会产生所推荐的操作员操作的顺序。 检查所有可能的新配置,并生成可接受解决方案的优先列表。

    Combined expert system/neural networks method for process fault diagnosis
    4.
    发明授权
    Combined expert system/neural networks method for process fault diagnosis 失效
    组合专家系统/神经网络方法进行过程故障诊断

    公开(公告)号:US5442555A

    公开(公告)日:1995-08-15

    申请号:US132888

    申请日:1993-10-07

    摘要: A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

    摘要翻译: 用于过程故障诊断的两级分层方法是操作系统在第一级采用面向功能的方法和在第二级采用基于组件特征的方法,其中决策过程按照降低智能的顺序来构造 提高精度。 在第一级,诊断方法是一般性的,并且了解整个过程,包括各种各样的植物瞬变和过程组分的功能行为。 专家系统通过功能对故障进行分类,将诊断焦点缩小到可能导致操作系统检测到的功能不当行为的一组可能的故障组件。 在第二级,诊断方法将其范围限于组件故障,使用更详细的组件特性知识。 训练的人工神经网络用于进一步缩小诊断,并通过将异常状态数据分类为通过组件特征的假设组件之一的故障来唯一地识别故障组件。 一旦检测到异常,则使用层次结构来从功能不正当行为(即面向功能的方法)连续地缩小诊断焦点,直到可以确定故障,即组件特征导向方法。

    System diagnostics using qualitative analysis and component functional
classification
    5.
    发明授权
    System diagnostics using qualitative analysis and component functional classification 失效
    使用定性分析和组件功能分类进行系统诊断

    公开(公告)号:US5265035A

    公开(公告)日:1993-11-23

    申请号:US885132

    申请日:1992-05-18

    IPC分类号: G21D3/04 G06F15/46 G06F15/20

    摘要: A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

    摘要翻译: 一种用于在核电厂非正常运行期间检测和识别故障部件候选的方法涉及对与一个或多个工厂部件相关的热液压控制量中的质量,能量和动量的守恒方程中的宏观不平衡的定性分析,以及 组件功能分类。 质量和能量的定性分析是通过相关的状态方程进行的,而通过跟踪并入第一知识库的质量流量来获得动量失衡。 植物组分根据其类型被功能分类为质量,能量和动量的源或汇,这取决于三种平衡方程中的哪一种最强烈地受到并入第二知识库中的有缺陷的组分的影响。 描述系统组件之间的连接的信息形成第三个知识库。 该方法特别适于在诊断专家系统中用于在存在组件故障的情况下检测和识别故障组件候选者,并且不限于在核电站中使用,而是可以用于几乎任何类型的热液压操作 系统。