摘要:
A query is received by a database server from a remote application server. The query is associated with a calculation scenario that defines a data flow model that includes one or more calculation nodes. The calculation nodes each define one or more operations to execute by a calculation engine on the database server. Thereafter, the database server instantiates a runtime model of the calculation scenario by accessing a local settings object stored with the calculation scenario that specifies local settings for the calculation scenario. Subsequently, the database server executes the operations defined by the calculation nodes of the instantiated calculation scenario to result in a responsive data set. The data set can then be provided by the database server to the application server.
摘要:
A query is received by a database server from a remote application server. The query is associated with a calculation model that defines a data flow model that includes a plurality of calculation nodes that each define one or more operations to execute on the database server. Thereafter, the database server dynamically determine, using at least one attribute of at least one dataset responsive to the query, that intermediate results provided by at least one of the operations specified by at least one of the nodes of the calculation model require partitioning. The database server then modifies the calculation model to partition operations on the at least one dataset based on the dynamic determination. The database server subsequently instantiates the modified calculation model so that it can be executed to generate at least one result set.
摘要:
A query is received by a database server from a remote application server. The query is associated with a calculation scenario that defines a data flow model that includes one or more calculation nodes and that includes a pre-defined aggregation property. Each calculation node defines one or more operations to execute on the database server. The database server can include a column-oriented database. Thereafter, the database server instantiates the calculation scenario such that, based on the aggregation property, at least one non-aggregating operation specified by a calculation node is transformed into a aggregating operation based on a root node aggregation of the calculation scenario. Subsequently, the database server executes the operations defined by the calculation nodes of the optimized calculation scenario to result in a responsive data set. The database server then provides the data set to the application server.
摘要:
A query is received by a database server from a remote application server. The query is associated with a calculation scenario that defines a data flow model that includes one or more calculation nodes and that includes at least one hierarchy filter. Each hierarchy filter is a filter of at least one hierarchy table. Each calculation node defines one or more operations to execute on the database server. Thereafter, the database server instantiates the calculation scenario. The instantiating includes optimizing the calculation scenario by transforming at least one hierarchy filter and pushing down the at least one transformed hierarchy filter to a lower calculation node. The database server then executes the operations defined by the calculation nodes of the optimized calculation scenario to result in a responsive data set. The database server can subsequently provide the data set to the application server.
摘要:
A query associated with a calculation scenario comprising a plurality of calculation nodes can be received by a calculation engine. The calculation scenario is instantiated and the query is transformed into a convex hull filter based on the at least one multiple selection condition that can be executed at any of the calculation nodes. The instantiated calculation scenario and the convex hull filter are executed to provide a result set. Related apparatus, systems, methods, and articles are also described.
摘要:
A database server receives a multi-part query from a remote application server. The multi-part query specifies a calculation scenario defining a data flow model that includes a plurality of calculation nodes that include a main section of nodes and two or more branches of nodes. Each calculation node defines one or more operations to execute on the database server. Thereafter, the database server instantiates the specified calculation scenario and additionally executes the operations defined by the calculation nodes of the main section of the instantiated calculation scenario a single time and executes the operations defined by the calculation nodes of the branches to result in respective responsive data sets corresponding to each branch. The responsive data sets are then provided by the database server to the application server. Related apparatus, systems, techniques and articles are also described.
摘要:
A query is received and an initial data flow graph comprising a plurality of nodes is generated for executing the query. The initial data flow graph is optimized using a model optimizer that accesses at least one of a plurality of patterns to identify a matching pattern and executes at least one optimization rule associated with a matching pattern. Execution of the query is then initiated using the optimized data flow graph. Related apparatus, systems, techniques and articles are also described.
摘要:
A database query of point data among two or more axes of a database is received. The database stores point data in distinct integer vectors with a shared dictionary. Thereafter, the dictionary is scanned to determine boundaries for each axis specified by the query. In response, results characterizing data responsive to the query within the determined boundaries for each axis are returned. Related apparatus, systems, techniques and articles are also described.
摘要:
In one embodiment the present invention includes an OLAP execution model using relational operations. In one embodiment, the present invention includes, a method comprising receiving a first query in an online analytic processor (OLAP) executing on one or more computers, the OLAP generating and comprising a model specifying a graph defining a plurality of nodes and a plurality of tiers, each node corresponding to a different operation on data. A second query is generated by the OLAP. The second query includes a plurality of layered subqueries each corresponding to one of the nodes in the graph for specifying the different operations on data. The second query is received in a relational engine coupled to the datastore. The relational engine executes the second query, and in accordance therewith, retrieves data.
摘要:
In one embodiment the present invention includes an OLAP execution model using relational operations. In one embodiment, the present invention includes, a method comprising receiving a first query in an online analytic processor (OLAP) executing on one or more computers, the OLAP generating and comprising a model specifying a graph defining a plurality of nodes and a plurality of tiers, each node corresponding to a different operation on data. A second query is generated by the OLAP. The second query includes a plurality of layered subqueries each corresponding to one of the nodes in the graph for specifying the different operations on data. The second query is received in a relational engine coupled to the datastore. The relational engine executes the second query, and in accordance therewith, retrieves data.