摘要:
An improved circuit card package wherein additional child cards are accommodated by providing an interface adaptor board having connectors for receiving the child cards. The interface adaptor board is itself received by a connector on a parent card, which plugs into a system backplane.
摘要:
A non-invasive tissue oxygenation system for accelerating the healing of damaged tissue and to promote tissue viability is disclosed herein. The system is comprised of a lightweight portable electrochemical oxygen concentrator, a power management system, microprocessors, memory, a pressure sensing system, an optional temperature monitoring system, oxygen flow rate/oxygen partial pressure monitoring and control system, a display screen and key pad navigation controls as a means of providing continuous variably controlled low dosages of oxygen to a wound site and monitoring the healing process. A kink resistant oxygen delivery tubing, whereby the proximal end is removably connected to the device and the distal end with holes or a flexible, flat, oxygen-permeable tape is positioned at or near the wound bed as a means of applying near 100% pure oxygen to the wound site. The distal end of the tube is in communication with the electrochemical oxygen concentrator and wound monitoring system to communicate oxygen partial pressure and, where appropriate, temperature information. A moisture absorbent dressing is positioned over the distal end of the tubing at the wound site and a reduced moisture vapor permeable dressing system is positioned whereby covering the moisture absorbent dressing, distal end of tubing and wound site creating a restricted or occluded airflow enclosure. The restricted airflow enclosure allows the out-of-the-way control and display unit to provide a controlled hyperoxia and hypoxia wound site for accelerated wound healing.
摘要:
A non-invasive tissue oxygenation system for accelerating the healing of damaged tissue and to promote tissue viability is disclosed herein. The system is comprised of a lightweight portable electrochemical oxygen concentrator, a power management system, microprocessors, memory, a pressure sensing system, a temperature monitoring system, oxygen flow rate monitoring and control system, a display screen and key pad navigation controls as a means of providing continuous variably controlled low dosages of oxygen to a wound site and monitoring the healing process. A kink resistant oxygen delivery tubing, whereby the proximal end is removably connected to the device and the distal end with holes or a flexible, flat, oxygen-permeable tape is positioned on the wound bed as a means of applying oxygen to the wound site. The distal end of the tube is in communication with the electrochemical oxygen concentrator and wound monitoring system to communicate temperature and oxygen partial pressure information. A moisture absorbent dressing is positioned over the distal end of the tubing on the wound site and a reduced moisture vapor permeable dressing system is positioned whereby covering the moisture absorbent dressing, distal end of tubing and wound site creating a restricted airflow enclosure. The restricted airflow enclosure allows the out-of-the-way control and display unit to provide a controlled hyperoxia and hypoxia wound site for accelerated wound healing.
摘要:
A ballast adapter includes a bracket plate formed as a flat sheet having a bracket plate outside surface and a bracket plate inside surface. The ballast adapter also has a pair of bracket plate arms having a sliding mount to the bracket plate. The pair of bracket plate arms are mounted to slide adjust toward and away from each other. The pair of bracket plate arms includes a first bracket plate arm and a second bracket plate arm. A pair of bracket sidewalls extend in a direction at a generally normal plane from the pair of bracket plate arms. The pair of bracket sidewalls includes a first bracket sidewall and a second bracket sidewall. The first bracket sidewall extends from the first bracket plate arm and the second bracket sidewall extends from the second bracket plate arm.
摘要:
A non-invasive tissue oxygenation system for accelerating the healing of damaged tissue and to promote tissue viability is disclosed herein. The system is comprised of a lightweight portable electrochemical oxygen concentrator, a power management system, microprocessors, memory, a pressure sensing system, an optional temperature monitoring system, oxygen flow rate/oxygen partial pressure monitoring and control system, a display screen and key pad navigation controls as a means of providing continuous variably controlled low dosages of oxygen to a wound site and monitoring the healing process. A kink resistant oxygen delivery tubing, whereby the proximal end is removably connected to the device and the distal end with holes or a flexible, flat, oxygen-permeable tape is positioned at or near the wound bed as a means of applying near 100% pure oxygen to the wound site. The distal end of the tube is in communication with the electrochemical oxygen concentrator and wound monitoring system to communicate oxygen partial pressure and, where appropriate, temperature information. A moisture absorbent dressing is positioned over the distal end of the tubing at the wound site and a reduced moisture vapor permeable dressing system is positioned whereby covering the moisture absorbent dressing, distal end of tubing and wound site creating a restricted or occluded airflow enclosure. The restricted airflow enclosure allows the out-of-the-way control and display unit to provide a controlled hyperoxia and hypoxia wound site for accelerated wound healing.
摘要:
A non-invasive tissue oxygenation system for accelerating the healing of damaged tissue and to promote tissue viability is disclosed herein. The system is comprised of a lightweight portable electrochemical oxygen concentrator, a power management system, microprocessors, memory, a pressure sensing system, a temperature monitoring system, oxygen flow rate monitoring and control system, a display screen and key pad navigation controls as a means of providing continuous variably controlled low dosages of oxygen to a wound site and monitoring the healing process. A kink resistant oxygen delivery tubing, whereby the proximal end is removably connected to the device and the distal end with holes or a flexible, flat, oxygen-permeable tape is positioned on the wound bed as a means of applying oxygen to the wound site. The distal end of the tube is in communication with the electrochemical oxygen concentrator and wound monitoring system to communicate temperature and oxygen partial pressure information. A moisture absorbent dressing is positioned over the distal end of the tubing on the wound site and a reduced moisture vapor permeable dressing system is positioned whereby covering the moisture absorbent dressing, distal end of tubing and wound site creating a restricted airflow enclosure. The restricted airflow enclosure allows the out-of-the-way control and display unit to provide a controlled hyperoxia and hypoxia wound site for accelerated wound healing.