摘要:
A radiation measuring device includes: a detector that detects radiation; a preamplifier that amplifies a signal outputted from the detector; a shaping amplifier that shapes the waveform of the signal outputted from the preamplifier; an A/D converter that converts the analog signal output from the shaping amplifier to a digital signal; and a digital data processing unit that calculates digital signal output from the A/D converter, wherein energy information of the radiation inputted to the detector is obtained from a pulse height of the pulse signal processed by the preamplifier and the shaping amplifier, and the pulse height of the current pulse is corrected in the digital data processing unit by performing an arithmetic operation using the pulse height information of the current pulse digitalized by the A/D converter, the generation time information of the preceding pulse, and the pulse height information of the preceding pulse.
摘要:
The present invention provides a radiation measurement device, which shortens periodic interruption periods in the radiation measurements and prevents damage to the amplifier, and a nuclear medicine diagnosis system using such measurement device. The radiation measurement device comprises a semiconductor radiation detector detecting a radiation, a capacitor, which applies voltage to the semiconductor radiation detector, one or more direct current power supplies each capable of making either of positive and negative electric charge collect on one of the electrodes of the capacitor, a constant-current device, which conducts an electric current from the direct current power supplies to the one of the electrodes of the capacitor, and two or more switching devices installed in the wiring connecting the direct current power supplies and the one of the electrodes of the capacitor. Further disclosed is a nuclear medicine diagnosis system equipped with such radiation measurement device.
摘要:
A PET apparatus comprises a plurality of detector units in the circumferential direction, wherein the detector unit includes a plurality of unit substrates therein, and wherein the unit substrate includes: a plurality of detectors upon which a γ-ray is incident; and an analog ASIC and digital ASIC for processing a γ-ray detection signal outputted by each of the detectors. The analog ASIC includes two slow systems having mutually different time constants, each of which outputs a pulseheight value. A noise determination part of the digital ASIC determines whether a relevant detection signal is an intended γ-ray detection signal or a noise based on a correlation between the pulseheight values, and a noise counting part counts the number of times of noise determination, and a detector output signal processing control part controls the signal processing with respect to an output signal from a relevant detector based on the count.
摘要:
A PET apparatus comprises a plurality of detector units in the circumferential direction, wherein the detector unit includes a plurality of unit substrates therein, and wherein the unit substrate includes: a plurality of detectors upon which a γ-ray is incident; and an analog ASIC and digital ASIC for processing a γ-ray detection signal outputted by each of the detectors. The analog ASIC includes two slow systems having mutually different time constants, each of which outputs a pulseheight value. A noise determination part of the digital ASIC determines whether a relevant detection signal is an intended γ-ray detection signal or a noise based on a correlation between the pulseheight values, and a noise counting part counts the number of times of noise determination, and a detector output signal processing control part controls the signal processing with respect to an output signal from a relevant detector based on the count.
摘要:
Provided are a detector array substrate and a nuclear medicine diagnosis device using the same. The detector array substrate is provided with a flat detection module stacked in plural detection elements, which is connected to said detectors each other, and have signal electrodes for reading out signals of respective detectors, and bias electrodes for applying bias voltage to respective detectors, in order to form plural detectors for detecting radiation; and stacked with the detectors by arranging the detection modules having the plural detectors, in an X direction, as well as by arranging the detection modules in a flat structure on both planes or one plane of a wiring board in a Z direction as for an XZ plane for detecting the radiation, and provided with the plural detection modules in a Y direction.
摘要:
A positron emission tomography apparatus installs a plurality of detector units in the circumference of a bed. The detector unit installs a plurality of combined substrates including detectors, analogue ASICs, and a digital ASIC and a voltage adjustment device inside a housing. A partition plate installed inside the housing separates the region inside the housing into a first region installed with the combined substrates and a second region installed with the voltage adjustment device. The partition plate blocks noise generated in the voltage adjustment device so as not to affect γ-ray detection signals outputted from the detectors, thereby preventing the effect of the noise generated in the voltage adjustment device toward γ-ray detection signals and shortening the examination time.
摘要:
A radiological imaging apparatus using a semiconductor radiation detector to make it possible to reduce a radiation measurement off time that may result from an attempt to avoid polarization, the radiological imaging apparatus comprising a capacitor that applies a voltage to a semiconductor radiation detector that detects a radiation from a subject, first current regulated means for conducting a charge current to the capacitor, and second current regulated means for conducting a discharge current from the capacitor, or comprising a capacitor that applies a voltage to the semiconductor radiation detector, a first resistor that conducts a charge current to and a discharge current from the capacitor, and a second resistor connected in parallel with the first resistor to subject the capacitor to charging and discharging.
摘要:
A radiological imaging apparatus using a semiconductor radiation detector to make it possible to reduce a radiation measurement off time that may result from an attempt to avoid polarization, the radiological imaging apparatus comprising a capacitor that applies a voltage to a semiconductor radiation detector that detects a radiation from a subject, first current regulated means for conducting a charge current to the capacitor, and second current regulated means for conducting a discharge current from the capacitor, or comprising a capacitor that applies a voltage to the semiconductor radiation detector, a first resistor that conducts a charge current to and a discharge current from the capacitor, and a second resistor connected in parallel with the first resistor to subject the capacitor to charging and discharging.
摘要:
A nuclear medicine imaging system is configured so that a semiconductor element and a metallic conductive member are bonded to one another with an electrically conductive adhesive composed of electric conductive particles and a resin binder, and a charge which is generated when radiation is incident on the semiconductor element is taken as a signal by a detection circuit from the conductive member through the electrically conductive adhesive, and a current source unit for forcing a larger current than that due to a charge generated by incoming radiation to flow at least through the electrically conductive adhesive and a protection circuit for protecting the detection circuit from the larger current passed by the current source unit are provided.
摘要:
The purpose of the present invention is to improve energy resolving power and prevent energy resolving power from deteriorating when a thick semiconductor detection element with a wide energy range is used, in a radiation measuring device using a semiconductor detector and a nuclear medicine diagnostic device. With the present invention, the purpose is achieved by pulsed wave value correction employing the difference of (Hs−Hf) between the pulsed wave height value Hs obtained from the slow speed shaping circuit, and the pulsed wave height value Hf obtained from the fast speed shaping circuit and normalized with respect to Hs. An even more desirable result may be obtained by employing either (Hs−Hf)/Hf or exp(k(Hs−Hf)/Hf), wherein k is a coefficient to be optimized, said optimization being dependent on the measurement assembly.