Abstract:
An exemplary fan driving system includes a driving device and a MOSFET group. The driving device includes a first adjustable resistor connected between its first voltage signal input terminal and ground, and a second adjustable resistor connected between its second voltage signal input terminal and ground. The MOSFET group includes two N-type MOSFETs and two P-type MOSFETs. The first terminal of the fan is connected to an anode of D1 and a cathode of D3. The second terminal of the fan is connected to an anode of D2 and a cathode of D4. Cathodes of the D1 and D2 are configured to connect a supply voltage. Anodes of the D3 and D4 both are grounded. The fan driving system can effectively discharge off the residual current in the coil of the fan at the moment of the MOSFET group being switched off.
Abstract:
An exemplary driving apparatus capable of generating a driving current, including: an analog input generating circuit, an analog input driving circuit, and an output circuit. The analog input generating circuit is electrically connected between a first voltage source and the ground and configured (i.e., structured and arranged) for supplying an adjustable analog signal. The analog input driving circuit is electrically connected between a second voltage source and the ground and configured for converting the analog signal into a pulsed signal. The output circuit is configured for converting the pulsed signal into a driving current as an output. The frequency of the pulsed signal can be adjusted via adjusting the analog signal and thereby varying the driving current. Thus the driving current can be adapted for the different target loads.
Abstract:
An exemplary fan driving system includes a driving device and a MOSFET group. The driving device includes a first adjustable resistor connected between its first voltage signal input terminal and ground, and a second adjustable resistor connected between its second voltage signal input terminal and ground. The MOSFET group includes two N-type MOSFETs and two P-type MOSFETs. The first terminal of the fan is connected to an anode of D1 and a cathode of D3. The second terminal of the fan is connected to an anode of D2 and a cathode of D4. Cathodes of the D1 and D2 are configured to connect a supply voltage. Anodes of the D3 and D4 both are grounded. The fan driving system can effectively discharge off the residual current in the coil of the fan at the moment of the MOSFET group being switched off.
Abstract:
A backlight module (100) includes a light guide plate (110) having a light incident surface (111) and a light emitting surface (112), a fluorescent layer (120) arranged on the light emitting surface thereof, and a light source (130) disposed adjacent to the light incident surface of the guide plate for emitting towards the incident surface of the light guide plate, wherein the light is configured for stimulating the fluorescent layer such that light exiting from the light guide plate appears to be white light.
Abstract:
A level shifter (100) includes a first transistor (111), a second transistor (112), a third transistor (121), a fourth transistor (122), a fifth transistor (151), and a sixth transistor (152). The first and second transistors are first-type transistors; and the third and fourth transistors are second-type transistors different from the first-type transistors. The fifth and sixth transistors are the first-type transistors same as the first and second transistors. The level shifter has a quick operating speed.
Abstract:
An exemplary driving apparatus capable of generating a driving current, including: an analog input generating circuit, an analog input driving circuit, and an output circuit. The analog input generating circuit is electrically connected between a first voltage source and the ground and configured (i.e., structured and arranged) for supplying an adjustable analog signal. The analog input driving circuit is electrically connected between a second voltage source and the ground and configured for converting the analog signal into a pulsed signal. The output circuit is configured for converting the pulsed signal into a driving current as an output. The frequency of the pulsed signal can be adjusted via adjusting the analog signal and thereby varying the driving current. Thus the driving current can be adapted for the different target loads.