摘要:
In an embodiment, a graphical model may include a functional portion and a architectural portion. The architectural portion may describe a multiprocessor system. Inter-process communication blocks may be defined that describe the connectivity of functional blocks in the deployed version of the model. The IPC blocks may describe the connectivity of the blocks independent of the communication channel(s) that connect the processor nodes in the multiprocessor system.
摘要:
In an embodiment, a system may receive information regarding a group of physical devices; receive information regarding a set of functional blocks associated with a functional model; and receive mapping information that indicates a mapping between the set of functional blocks and one or more physical devices of the group of physical devices. The system may further generate at least one functional effect associated with the functional model. The generating may be based on: the set of functional blocks, the mapping information, and the information regarding the one or more physical devices. The system may also store or output the at least one functional effect.
摘要:
Exemplary embodiments allow executable graphical models, such as block diagram models, to be graphically partitioned for execution on concurrent computing resources. Embodiments allow model components to be grouped into subtasks that are affiliated with tasks associated with concurrent computing resources. Tasks and sub graphs can be mapped to concurrent computing resources according to characteristics, such as sample time, solver type, etc. Embodiments further allow mappings to be visually indicated to a user via various display techniques including color, text, icons, shading, grouping of identifiers, etc. Concurrently executing portions of a model allows model results to be obtained faster than can be obtained when models are executed on a single computing resource, such as a single processor.
摘要:
A system may receive a model, extract information from the model, form a group of tags using the extracted information, and associate the group of tags with the model. The system may further receive a search query including one or more sequences of characters and determine whether to provide the model in a list of models created for the search query, based on the one or more sequences of characters and the group of tags.
摘要:
Exemplary embodiments allow executable graphical models, such as block diagram models, to be graphically partitioned for execution on concurrent computing resources. Embodiments allow model components to be grouped into subtasks that are affiliated with tasks associated with concurrent computing resources. Tasks and sub graphs can be mapped to concurrent computing resources according to characteristics, such as sample time, solver type, etc. Embodiments further allow mappings to be visually indicated to a user via various display techniques including color, text, icons, shading, grouping of identifiers, etc. Concurrently executing portions of a model allows model results to be obtained faster than can be obtained when models are executed on a single computing resource, such as a single processor.
摘要:
A device receives information associated with a functional model, and generates the functional model based on the received information and with a technical computing environment (TCE), where the functional model including nodes, inputs, and outputs. The device also automatically detects architecture information from an architecture model associated with the functional model, and automatically assigns, based on the architecture information, at least one signal between two nodes of the functional model, a node and an input of the functional model, or a node and an output of the functional model. The device obtains information for code generation based on the assigned at least one signal, and stores the information for code generation.
摘要:
A system and method may generate executable block diagrams in which at least some of the blocks run in accordance with message-based execution semantics. A message may include an input data payload that does not change over time, and the message may persist for only a determined time interval during execution of block diagram. A message-based execution engine may control execution of message-based blocks in which a source block may generate a message at a particular point in time, the message may be sent to one or more destination blocks triggering execution of those blocks, and the message may be destroyed on or after a determined time interval. Other execution domains, such as a time-based or state-based execution domain, may be provided, and the system may implement a hybrid execution model. A verification engine may provide one or more tools for evaluating and verifying operation of message-based blocks. The verification engine may support one or more verification blocks that may be added to the block diagram and associated with the diagram's message-based blocks. The verification blocks may capture and present messages exchanged among the message-based blocks. The verification blocks may also specify an expected interaction of messages, and determine whether the actual messages are equivalent to the expected interaction. If not, the verification block may perform one or more predefined actions, such as suspending further execution of the block diagram.
摘要:
A system may receive a model, extract information from the model, form a group of tags using the extracted information, and associate the group of tags with the model. The system may further receive a search query including one or more sequences of characters and determine whether to provide the model in a list of models created for the search query, based on the one or more sequences of characters and the group of tags.
摘要:
A system and method may generate executable block diagrams in which at least some of the blocks run in accordance with message-based execution semantics. A message may include an input data payload that does not change over time, and the message may persist for only a determined time interval during execution of block diagram. A message-based execution engine may control execution of message-based blocks in which a source block may generate a message at a particular point in time, the message may be sent to one or more destination blocks triggering execution of those blocks, and the message may be destroyed on or after a determined time interval. Other execution domains, such as a time-based or state-based execution domain, may be provided, and the system may implement a hybrid execution model. A verification engine may provide one or more tools for evaluating and verifying operation of message-based blocks. The verification engine may support one or more verification blocks that may be added to the block diagram and associated with the diagram's message-based blocks. The verification blocks may capture and present messages exchanged among the message-based blocks. The verification blocks may also specify an expected interaction of messages, and determine whether the actual messages are equivalent to the expected interaction. If not, the verification block may perform one or more predefined actions, such as suspending further execution of the block diagram.
摘要:
A system may receive a model, extract information from the model, form a group of tags using the extracted information, and associate the group of tags with the model. The system may further receive a search query including one or more sequences of characters and determine whether to provide the model in a list of models created for the search query, based on the one or more sequences of characters and the group of tags.