Abstract:
The present invention discloses a micro LED structure including a first semiconductor layer, a first electrode, a second electrode, and an active layer. The first semiconductor layer has two opposite sides defined as a first surface and a second surface. The first semiconductor layer has a doped region located therein and exposed on the first surface. A pn junction is formed between the doped region and the first semiconductor layer. The first electrode and the second electrode, located on the first surface, are capable of electrically connecting to the first semiconductor layer and the doped region respectively. The active layer is adjacent to the second surface. Wherein the first semiconductor layer is a first doping type, and the doped region is a second doping type different from the first doping type, and the first semiconductor layer and the pn junction are located at identical side of the active layer.
Abstract:
The present invention relates an optical three-dimensional coordinate sensor system and method thereof. A plurality of light-emitting modules produce a plurality of light signals, and then a plurality of reflected light signals reflected by an object are received by a plurality of photodetectors. After receiving the reflected light signals, the photodetectors generate a plurality of photocurrents. A plurality of active pixel circuits receive the photocurrents and transform the photocurrents to a plurality of reflective optical voltages. A plurality of differential amplifier circuits (DAC) compare the reflective optical voltages and the background voltages, and then output a plurality of DAC output voltages of the reflected light signals. Afterward, a processing module detects the DAC output voltages and uses an algorithm to calculate the top three of the DAC output voltages to determine the three-dimensional coordinate of the object.
Abstract:
The present invention relates an optical three-dimensional coordinate sensor system and method thereof. A plurality of light-emitting modules produce a plurality of light signals, and then a plurality of reflected light signals reflected by an object are received by a plurality of photodetectors. After receiving the reflected light signals, the photodetectors generate a plurality of photocurrents. A plurality of active pixel circuits receive the photocurrents and transform the photocurrents to a plurality of reflective optical voltages. A plurality of differential amplifier circuits (DAC) compare the reflective optical voltages and the background voltages, and then output a plurality of DAC output voltages of the reflected light signals. Afterward, a processing module detects the DAC output voltages and uses an algorithm to calculate the top three of the DAC output voltages to determine the three-dimensional coordinate of the object.