Abstract:
According to a method for controlling the air volume in a closed pneumatic spring system of a vehicle, an air-powered pump supplies at least two pneumatic springs and/or a compressed air reservoir with a specific air volume as needed such that the air pressure prevailing in the respective pneumatic spring and/or the compressed air reservoir is at a level which causes a vehicle body resting on the pneumatic spring to be positioned at a desired distance from the roadway or the vehicle axle. In order to obtain largely constant control velocities at different load conditions of the vehicle while using a smaller compressed air reservoir than in previously known systems, the pneumatic spring pressure (P) is measured in at least two of the pneumatic springs, the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle is determined, the axle load (AL) of at least one vehicle axle is determined from the pneumatic spring pressure (P) and the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle, a target system air volume (PV_SOLL) is determined in accordance with the respective axle load (AL), and the actual system air volume is adjusted to said target system air volume by actuating the air-powered pump or a relief valve.
Abstract:
In addition to the consumers of a closed loop, known air supply systems also can supply an external consumer with fresh pressurized air. These systems are very complex with respect to apparatus and furthermore have the disadvantage that already improved pressurized air can escape from the pressurized air store during the supply of the external consumer. A switchable 3/2-directional valve (31) is arranged in the first consumer pressure line (19) of the drive unit (1) and a switchable 3/2-directional valve (32) is mounted in the store pressure line (11) of the drive unit (1) and a switchable check valve is mounted in the bypass line (16) of the store pressure line (11). This check valve disables the throttle function of the bypass throttle (17).
Abstract:
A dryer circuit for a pneumatic regulating device of a vehicle, comprising an air dryer, and a first compressor, wherein the first compressor is designed to compress system air present in the pneumatic regulating device, wherein the air dryer, the first compressor and subsystems, which can be connected to the first compressor, of the pneumatic regulating device are arranged in such a way that, in the operating mode of a closed air supply, air delivered between the components of one of the subsystems by the first compressor is delivered so as to bypass the air dryer.
Abstract:
A closed level control system includes an air dryer (10) which is mounted in a pressurized air line (4). The compressor output (16) can be connected to the pressurized air supply vessel (12) via the pressurized air line (4). Air from the atmosphere can be transferred via an intake valve (30) into the pressurized air supply vessel (12) via the compressor and the air dryer (10). Furthermore, pressurized air can be discharged into the atmosphere from the pressurized air supply vessel (12) via the air dryer (10) and the intake valve (30). There is a flow in the opposite direction through the air dryer than when filling the pressurized air supply vessel (12) from the atmosphere. In this way, an excellent regeneration of the air dryer (10) is ensured.
Abstract:
In order to simplify air flow control in a self-contained air supply system, an average control speed is calculated on the basis of a defined movement of the air springs (3, 4) and compared with an optimum control speed. The result of the comparison of the control speeds is used to determine the need for or the excess of an amount of compressed air. There are at least three possibilities for calculating the average control speed.
Abstract:
The damper force in vehicles having a ride level control system is controlled by means of a method, according to which, when the leveling system is activated, a signal is generated and transmitted to a damper force control device (5). When the level control system is activated, the damper force is adapted, and especially reduced for a rapid control.
Abstract:
A reciprocating piston compressor for a gaseous medium is provided having a reduced structural height. The compressor is especially for a level control system in a motor vehicle. The maximum pivot angle of the piston ring longitudinal axis relative to the longitudinal axis of the cylinder running path is smaller during the upward movement of the piston than for the downward movement of the piston. The longitudinal axis of the cylinder running path is offset relative to the first spatial axis.
Abstract:
A method for controlling the regeneration cycles for an air dryer in a closed ride height control system for vehicles. Compressed air chambers and a compressed air storage reservoir are charged with compressed air and ventilated via a compressed air line, or are charged via a compressed air intake line connected to the compressor and ventilated via the compressed air line. Compressed air quantity delivered through the dryer by the compressor, and temperature and/or the humidity of the air sucked in from the atmosphere are measured. The dryer is considered saturated under the assumption that air sucked in by the compressor and delivered through the air dryer is at the highest possible ambient temperature and humidity. Regeneration air quantity required for the compressed air quantity for the dryer to attain the desired dew point is determined as a function of the ambient temperature and/or the humidity of the intake air.
Abstract:
In order to simplify air flow control in a self-contained air supply system, an average control speed is calculated on the basis of a defined movement of the air springs (3, 4) and compared with an optimum control speed. The result of the comparison of the control speeds is used to determine the need for or the excess of an amount of compressed air. There are at least three possibilities for calculating the average control speed.
Abstract:
According to a method for controlling the air volume in a closed pneumatic spring system of a vehicle, an air-powered pump supplies at least two pneumatic springs and/or a compressed air reservoir with a specific air volume as needed such that the air pressure prevailing in the respective pneumatic spring and/or the compressed air reservoir is at a level which causes a vehicle body resting on the pneumatic spring to be positioned at a desired distance from the roadway or the vehicle axle. In order to obtain largely constant control velocities at different load conditions of the vehicle while using a smaller compressed air reservoir than in previously known systems, the pneumatic spring pressure (P) is measured in at least two of the pneumatic springs, the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle is determined, the axle load (AL) of at least one vehicle axle is determined from the pneumatic spring pressure (P) and the distance (HN, NN, TN) of the vehicle body to the roadway or the vehicle axle, a target system air volume (PV_SOLL) is determined in accordance with the respective axle load (AL), and the actual system air volume is adjusted to said target system air volume by actuating the air-powered pump or a relief valve.