Abstract:
A method for deploying a bifurcated endoluminal prosthesis at the junction of a main vessel and first and second branch vessels, comprising providing a deployment system containing a prosthesis having a main body section and first and second proximally extending branch sections, introducing the deployment system into the first branch vessel at a first access site, advancing the deployment system distally through at least a portion of the first branch vessel and into the main vessel, releasing the second branch section of the prosthesis by proximally retracting an outer sheath of the deployment system, expanding the main body section of the prosthesis from a radially compressed state within the deployment system to a radially expanded state within the main vessel by removing a first peelable sheath from the main branch section, and expanding the second branch section within the second branch vessel by proximally retracting a second branch release wire.
Abstract:
An endoluminal repair of abdominal aortic aneurysms at the aortic and iliac bifurcation. In particular, a deployment system and graft are disclosed for deploying the bifurcated graft within both iliac branches, as well as the aortic trunk, from a single vascular access. The disclosed deployment system includes a delivery catheter having a releasable restraint for the main body section of the graft and separate releasable restraints for each of the first and second branch sections of the graft.
Abstract:
The present invention relates to the endoluminal repair of abdominal aortic aneurysms at the aortic and iliac bifurcation. In particular, a deployment system and graft are disclosed for deploying the bifurcated graft within both iliac branches, as well as the aortic trunk, from a single vascular access.
Abstract:
The present invention relates to the endoluminal repair of abdominal aortic aneurysms at the aortic and iliac bifurcation. In particular, a deployment system and graft are disclosed for deploying the bifurcated graft within both iliac branches, as well as the aortic trunk, from a single vascular access.
Abstract:
A method for deploying a bifurcated endoluminal prosthesis at the junction of a main vessel and first and second branch vessels, comprising providing a deployment system containing a prosthesis having a main body section and first and second proximally extending branch sections, introducing the deployment system into the first branch vessel at a first access site, advancing the deployment system distally through at least a portion of the first branch vessel and into the main vessel, releasing the second branch section of the prosthesis by proximally retracting an outer sheath of the deployment system, expanding the main body section of the prosthesis from a radially compressed state within the deployment system to a radially expanded state within the main vessel by removing a first peelable sheath from the main branch section, and expanding the second branch section within the second branch vessel by proximally retracting a second branch release wire.
Abstract:
The present invention relates to the endoluminal repair of abdominal aortic aneurysms at the aortic and iliac bifurcation. In particular, a deployment system and graft are disclosed for deploying the bifurcated graft within both iliac branches, as well as the aortic trunk, from a single vascular access.
Abstract:
A graft deployment system, comprises an elongate, flexible catheter body, having a proximal end and a distal end and comprising an outer sheath and an inner core that is axially moveable with respect to the outer sheath. A main vessel graft restraint comprising a first peelable cover for restrains a main vessel portion of a graft. In a bifurcated graft, a first branch vessel graft restraint restrains a first branch vessel portion of the graft. A second branch vessel graft restraint restrains a second branch vessel portion of the graft. The first peelable cover is coupled to a main branch release element and wherein each of the main vessel graft restraint, first branch vessel graft restraint, and the second branch vessel graft restraint are positioned within the catheter body in a graft loaded condition.
Abstract:
The present invention relates to the endoluminal repair of abdominal aortic aneurysms at the aortic and iliac bifurcation. In particular, a deployment system and graft are disclosed for deploying the bifurcated graft within both iliac branches, as well as the aortic trunk, from a single vascular access.
Abstract:
A method of manufacturing a stem cell sheets is provided which includes: (a) obtaining mesenchymal stem cells; (b) extracting programmed death ligands one (PD-L1) from the mesenchymal stem cells; (c) selecting only PD-L1 positive (PD-L1+ MSCs) from the PD-L1; (d) differentiating the PD-L1+ cells into osteoblasts and chondroblasts in a predetermined activation condition; and (e) forming the stem cell sheets by mixing the PD-L1+ MSCs with platelet rich plasma solution and CaCl2).
Abstract:
Mechanisms, which can include systems, methods, and media, for providing secure network communications are provided, the mechanisms comprising: selecting a first channel for a network communication using a hardware processor; passing media content to a user device using the first channel; after a period of time, selecting a second channel for the network communication using the hardware processor; and passing media content to the user device using the second channel.