摘要:
A method is disclosed for preparing an intimate mixture of powders of nickel-boron-silicon alloy and molybdenum metal powder suitable for thermal spray coatings which comprises milling a starting mixture of the alloy and molybdenum powder to produce a milled mixture wherein the average particle size is less than about 10 micrometers in diameter, forming an aqueous slurry of the resulting milled mixture and a binder which can be an ammoniacal molybdate compound or polyvinyl alcohol, and agglomerating the milled mixture and binder. The intimate mixture and binder are preferably sintered in a reducing atmosphere at a temperature of about 800.degree. C. to about 950.degree. C. for a sufficient time to form a sintered partially alloyed mixture wherein the bulk density is greater than about 1.2 g/cc. The resulting sintered mixture is preferably entrained in an inert carrier gas, passed into a plasma flame wherein the plasma gas can be argon or a mixture of argon and hydrogen, and maintained in the plasma flame for a sufficient time to melt essentially all of the powder particles of the sintered mixture to form spherical particles of the melted portion, and to further alloy the sintered mixture, and cooled.
摘要:
A method is disclosed for preparing an intimate mixture of powders of nickel-chromium-boron-silicon alloy, molybdenum metal powder, and Cr.sub.3 C.sub.2 /NiCr alloy suitable for thermal spray coatings which comprises milling a starting mixture of the above two alloys with molybdenum powder to produce a milled mixture wherein the average particle size is less than about 10 micrometers in diameter, forming an aqueous slurry of the resulting milled mixture and a binder which can be an ammoniacal molybdate compound or polyvinyl alcohol, and agglomerating the milled mixture and binder. The intimate mixture and binder may be sintered in a reducing atmosphere at a temperature of about 800.degree. C. to 950.degree. C. for a sufficient time to form a sintered partially alloyed mixture wherein the bulk density is greater than about 1.2 g/cc. The resulting sintered mixture may be entrained in an inert carrier gas, passed into a plasma flame wherein the plasma gas can be argon or a mixture of argon and hydrogen, and maintained in the plasma flame for a sufficient time to melt essentially all of the powder particles of the sintered mixture to form spherical particles of the melted portion, and to further alloy the sintered mixture, and cooled.
摘要:
Disclosed is a coated substrate article coated with an alloy powder containing, in weight percent, 7 to 19 silicon, up to 5 copper balance nickel, cobalt and/or iron plus impurities. The articles may be coated by a variety of spray coating processes; however, plasma spray coating is preferred. The coated article is especially suited for use in severe conditions of wet corrosion.
摘要:
A process is disclosed for producing chromium oxide powders, which comprises forming an aqueous slurry wherein the solids content is a mixture which consists essentially of in percent by weight about 5 to 15 chromium acetate and the balance chromium oxide, agglomerating the mixture, sintering the resulting agglomerated mixture in a hydrogen atmosphere at a temperature at about 1400.degree. C. to about 1550.degree. C. in metallic vessels, entraining the sintered chromium oxide powder in a carrier gas, passing the sintered chromium oxide powder and the carrier gas through a plasma flame at a power of about 10 to about 80 KW using an inert gas as the plasma gas, and cooling the resulting plasma heated chromium oxide powder to produce free flowing chromium oxide powder having a free chromium content of less than about 1% by weight.
摘要:
A method is disclosed for producing a Wc-Co-Cr alloy which comprises alloying a mixture consisting essentially of in percent by weight of from about 85 to about 90 tungsten carbide, wherein the particle size of the tungsten carbide is less than about 1 micrometer in diameter, from about 9 to about 11 cobalt metal powder, wherein the particle size of the cobalt is from about 1 to about 5 micrometers in diameter, and from about 3.5 to about 4.5 chromium wherein the chromium is provided as chromium carbide to produce a Wc-Co-Cr alloy the alloy capable of being used as a coating wherein the hardness of the coating is from about 1060 to about 1240 DPH carbide hardness and from about 870 to about 980 DPH matrix hardness and wherein the roughness is from about 190 to about 200 AA.