摘要:
Adjustably metered transfer of resin increments in folded bed ion exchange systems are provided by a method and apparatus in which compacted liquid-containing resin granules are expelled from a column into a metering chamber which is filled to a level of a granule-retaining screen, the cut-off of the granule filling being signaled by liquid moving through the screen to a control level thereabove and/or by an increase in the hydraulic pressure of the liquid below the screen. In preferred embodiments the measuring chamber is provided with a flexible wall which is positioned to either increase or decrease the volume of the measuring chamber and thereby selectively vary the volume of the granule increment captivated by the chamber. The invention provides for the pulsing of resin increments of precisely and adjustably metered volume, and provides a means for keeping the loading and regeneration sides of the system in resin transfer balance.
摘要:
Adsorbed calcium is selectively removed from cation exchange resins in the presence of adsorbed magnesium by eluting the resin with aqueous sulfuric acid saturated with CaSO.sub.4 and undersaturated with MgSO.sub.4 to obtain a solution supersaturated with CaSO.sub.4 from which the CaSO.sub.4 can be readily precipitated. The magnesium is subsequently removed from the resin by eluting with aqueous sulfuric acid, such as 20-70% H.sub.2 SO.sub.4. The method is advantageously used in the regeneration of cation exchange resins, such as the loaded resins used for treatment of phosphate rock-derived phosphoric acid.
摘要翻译:在吸附的镁的存在下,从阳离子交换树脂中选择性地除去吸附的钙,通过用CaSO 4饱和的硫酸水溶液洗脱树脂并用MgSO 4饱和,得到用CaSO 4过饱和的溶液,其中CaSO 4可容易地沉淀。 随后用硫酸水溶液(如20-70%H 2 SO 4)洗脱,从树脂中除去镁。 该方法有利地用于阳离子交换树脂的再生,例如用于处理磷酸盐岩衍生的磷酸的负载树脂。
摘要:
High purity silica is obtained by the reaction of impure by-product waste silica with hydrogen fluoride preferably in the presence of water or sulfuric acid, producing silicon tetrafluoride gas and a mother liquor. The silicon tetrafluoride is separated from the mother liquor, which retains the impurities originally contained within the impure silica. The silicon tetrafluoride gas is contacted with high-purity water, in a clean environment, to form a slurry of high purity silica and high-purity hydrofluosilicic acid (FSA). A portion of the silica is filtered from the slurry and washed producing a high purity silica product. The rest of the silica-FSA slurry is preferably reacted with ammonia to form a slurry of ammonium fluoride and silica. The silica is separated from the ammonium fluoride and preferably washed and calcined to remove any remaining ammonium fluoride, leaving additional high purity silica product. The separated ammonium fluoride may be reacted with lime to produce additional products for recycling back into the process. The process can be repeated for further purification of the silica. The process may be used to produce substantially spherical silica particles about 1.0 to about 25.0 microns in diameter.
摘要:
An apparatus for producing phosphoric acid by the recovery of P.sub.2 O.sub.5 from a phosphate ore is disclosed. A slurry of a phosphate ore in an aqueous phosphoric acid solution is formed in each of a plurality of reaction zones connected in series. Phosphate ore is introduced into the first reaction zone and phosphoric acid into the last reaction zone whereby the reaction of the phosphoric acid with the ore forms a slurry of coarse solids, fine solids and monocalcium phosphate in the phosphoric acid solution. A first process stream comprising coarse solids is removed from the first reaction zone and each of the other reaction zones and is tranferred to the adjacent, successive reaction zone. A second process stream comprising fine solids is removed from the last reaction zone and the other reaction zones and is transferred into the adjacent, preceding zone in a direction which is countercurrent to the direction of flow of the first process stream and is concurrent with the direction of flow of the phosphoric acid from the last to the first reaction zones. A differential of phosphoric acid concentration is maintained between the reaction zones with the concentration decreasing in each reaction zone in the direction of flow of the first process stream.
摘要:
Fluosilicic acid is reacted with phosphate rock in order to produce wet process phosphoric acid and calcium fluoride which is later reacted with sulfuric acid to produce hydrogen fluoride and calcium sulfate. The hydrogen fluoride is then stripped from the phosphoric acid and recovered as either anhydrous hydrogen fluoride or concentrated hydrofluoric acid or reacted with aluminum trihydrate to produce aluminum fluoride; with sodium carbonate to produce sodium fluoride/bifluoride; or with ammonia to produce ammonium fluoride/bifluoride.
摘要:
Fluosilicic acid is reacted with phosphate rock in order to produce wet process phosphoric acid and calcium fluoride which is later reacted with sulfuric acid to produce hydrogen fluoride and calcium sulfate. The hydrogen fluoride is then stripped from the phosphoric acid and recovered as either anhydrous hydrogen fluoride or concentrated hydrofluoric acid or reacted with aluminum trihydrate to produce aluminum fluoride; with sodium carbonate to produce sodium fluoride/bifluoride; or with ammonia to produce ammonium fluoride/bifluoride.
摘要:
Fluosilicic acid is reacted with phosphate rock in order to produce wet process phosphoric acid and calcium fluoride which is later reacted with sulfuric acid to produce hydrogen fluoride and calcium sulfate. The hydrogen fluoride is then stripped from the phosphoric acid and recovered as either anhydrous hydrogen fluoride or concentrated hydrofluoric acid or reacted aluminum trihydrate to produce aluminum fluoride; with sodium carbonate to produce sodium fluoride/bifluoride; or with ammonia to produce ammonium fluoride/bifluoride.
摘要:
Relatively pure monopotassium phosphate is produced from wet process phosphoric acid in a process wherein the phosphoric acid is mixed with potassium chloride and recycled components from downstream product and by-product recovery steps and heated to permit hydrogen and chloride to evolve from the melt as gases and wherein the melt is subsequently treated so as to remove impurities so that the monopotassium phosphate may be recovered as a relatively pure crystalline product with low chloride content.
摘要:
A process and apparatus for producing phosphoric acid by the recovery of P.sub.2 O.sub.5 from a phosphate ore is disclosed. A slurry of a phosphate ore in an aqueous phosphoric acid solution is formed in each of a plurality of reaction zones connected in series. Phosphate ore is introduced into the first reaction zone and phosphoric acid into the last reaction zone whereby the reaction of the phosphoric acid with the ore forms a slurry of coarse solids, fine solids and monocalcium phosphate in the phosphoric acid solution. A first process stream comprising coarse solids is removed from the first reaction zone and each of the other reaction zones and is transferred to the adjacent, successive reaction zone. A second process stream comprising fine solids is removed from the last reaction zone and the other reaction zones and is transferred into the adjacent, preceding zone in a direction which is countercurrent to the direction of flow of the first process stream and is concurrent with the direction of flow of the phosphoric acid from the last to the first reaction zones. A differential of phosphoric acid concentration is maintained between the reaction zones with the concentration decreasing in each reaction zone in the direction of flow of the first process stream.