摘要:
A process of demineralizing a liquid containing organic matter and inorganic salts in solution, in which the treatment of the liquid comprises the following steps: the liquid is percolated over a strong cationic ion exchange resin for monovalent ions; both a batch of liquid from the preceding step and a brine for receiving ions from that liquid are caused to circulate in loops through at least one "two-compartment" electrodialyzer comprising a plurality of anionic membranes interposed between a plurality of cationic membranes; and the brine whose salt concentration lies in the range 90 grams per liter (g/l) to 110 g/l is used to regenerate the ion exchange resin.
摘要:
In the purification of acarbose by contacting an acarbose-containing solution with a cation exchanger to adsorb the acarbose, eluting the ion exchanger and collecting an eluate fraction enriched in purified acarbose, the improvement wherein the cation exchanger is a polymer obtained by polymerizing an aromatic compound possessing at least one vinyl group and at least one hydrophilic monomer in the presence of a solvent for the monomer which is a precipitant for the crosslinked polymer formed, isolating the resistant polymer, and sulphonating the polymer in the presence of a swelling agent for the polymer. The invention gives shapr separation and other processing advantages.
摘要:
Water is conditioned by contacting it with a weak acid cation exchange resin based upon a crosslinked methacrylic acid copolymer structure in the alkali metal (or ammonium) form. The resin when exhausted may be regenerated by either a two-step acid/alkali technique or by a one-step technique using a citric or fumaric acid solution or a poly or hexamethaphosphate solution. Water by this method is substantially free of hardness ion, dissolved heavy metal ions and has a corrected pH between 7 and 9.5, preferably between 8 and 8.5.
摘要:
This invention relates to the regeneration of cation exchanger resin containing adsorbed magnesium ions, and the recovery of the magnesium as a crystalline precipitate. The regeneration uses moderate to high concentration aqueous H.sub.2 SO.sub.4, and the recovered precipitate comprises one or more co-crystallization compounds of MgSO.sub.4 and H.sub.2 SO.sub.4.
摘要翻译:本发明涉及含有吸附的镁离子的阳离子交换树脂的再生以及作为结晶沉淀物的镁的回收。 再生使用中等至高浓度的H 2 SO 4水溶液,回收的沉淀物包含一种或多种MgSO 4和H 2 SO 4的共结晶化合物。
摘要:
Adsorbed calcium is selectively removed from cation exchange resins in the presence of adsorbed magnesium by eluting the resin with aqueous sulfuric acid saturated with CaSO.sub.4 and undersaturated with MgSO.sub.4 to obtain a solution supersaturated with CaSO.sub.4 from which the CaSO.sub.4 can be readily precipitated. The magnesium is subsequently removed from the resin by eluting with aqueous sulfuric acid, such as 20-70% H.sub.2 SO.sub.4. The method is advantageously used in the regeneration of cation exchange resins, such as the loaded resins used for treatment of phosphate rock-derived phosphoric acid.
摘要翻译:在吸附的镁的存在下,从阳离子交换树脂中选择性地除去吸附的钙,通过用CaSO 4饱和的硫酸水溶液洗脱树脂并用MgSO 4饱和,得到用CaSO 4过饱和的溶液,其中CaSO 4可容易地沉淀。 随后用硫酸水溶液(如20-70%H 2 SO 4)洗脱,从树脂中除去镁。 该方法有利地用于阳离子交换树脂的再生,例如用于处理磷酸盐岩衍生的磷酸的负载树脂。
摘要:
High-pressure boiler feedwater is polished and softened with a cation ion-exchange resin, and the resin is regenerated with a readily ionizable salt of an amine-type corrosion inhibitor.
摘要:
An improved, closed-cycle process for regeneration of weakly acidic spent cation resins and for the recovery and recycle of the regenerants is disclosed. The improvement resides in the use of hydroxy or alkoxy substituted carboxylic acids as the cation resin regenerant. These acids and their metal salts are soluble and are high boiling and do not form azeotropes. When the spent cation regenerant is combined with the spent anion regenerant such as an amine salt, a weak, dissociable complex of the regenerants is formed and the metal salt is reconstituted. The complex is dissociated, preferably by distillation, into the separate regenerants which are recycled and the salt is recovered.
摘要:
Methods for regenerating acidic ion-exchange resins and reusing regenerants in such methods are provided. A spent ion-exchange resin is contacted with an alcohol ion-exchange regenerant. The spent ion-exchange resin is thereafter contacted with an acidic ion-exchange regenerant to recharge the acidic ion-exchange resin to produce a regenerated acidic ion-exchange resin. Metal- and water-containing biomass-derived pyrolysis oil is then contacted with the regenerated acidic ion-exchange resin to produce low metal, water-containing biomass-derived pyrolysis oil. The regenerated acidic ion-exchange resin may be recycled. The spent alcohol and acid ion-exchange regenerants may be recovered and recycled.
摘要:
Embodiments of a water treatment system, a water treatment method, and an ozone kit for a water treatment system are provided. The water treatment system includes an ozone gas source; a regenerating fluid source; a water tank; a manifold having a first port in fluid communication with the regenerating fluid source, a second port in fluid communication with an outlet of the ozone gas source, and a third port in fluid communication with the water tank via a venturi nozzle; and a control system configured to: cause regenerating fluid to be drawn through the venturi nozzle into the water tank; and cause ozone gas to be drawn through the venturi nozzle into the water tank.
摘要:
A method for treating boiler water condensate to remove undesirable cations which comprises providing a bed of cation-exchange resin, passing water to be treated through said resin bed, and regenerating said resin with an aqueous solution of a salt comprising a volatile amine and an anion selected from anions which do not form precipitates with any cation present in the water to be treated under operational conditions, and wherein the volatile amine is optionally not the same as that employed as the corrosion inhibitor in the boiler water system. The preferred salts include cyclohexylamine citrate, methoxypropylamine citrate, diethanolamine citrate and monoethanolamine citrate. The proposed method is particularly advantageous since the anion of the regenerant salt is selected to avoid the formation of insoluble calcium salts.