Abstract:
Purification of &agr;-1 proteinase inhibitor (&agr;-1 PI) from aqueous solutions, such as human plasma, is accomplished by precipitation of contaminating proteins from the aqueous solution, followed by dilution of the solution to adjust its conductivity, and passing of the solution through an anion exchange resin. The conductivity of the solution is adjusted so that the &agr;-1 PI binds to the anion exchange resin, while other contaminating proteins and solvent pass through the resin. Further purification may be accomplished by cation chromatography, which takes advantage of the fact that &agr;-1 PI does not bind to the cation column under certain conditions. Some embodiments of the invention also include virus removal and/or inactivation by methods such as nanofiltration and such as contact with a non-ionic detergent. The methods of the present invention result in greater yield, purity, and pathogenic clearance of plasma fractions than known methods.
Abstract:
An improved process for the purification of antibodies from human plasma or other sources is disclosed. The process involves suspension of the antibodies at pH 3.8 to 4.5 followed by addition of caprylic acid and a pH shift to pH 5.0 to 5.2. A precipitate of contaminating proteins, lipids and caprylate forms and is removed, while the majority of the antibodies remain in solution. Sodium caprylate is again added to a final concentration of not less than about 15 mM. This solution is incubated for 1 hour at 25° C. to effect viral inactivation. A precipitate (mainly caprylate) is removed and the clear solution is diluted with purified water to reduce ionic strength. Anion exchange chromatography using two different resins is utilized to obtain an exceptionally pure IgG with subclass distribution similar to the starting distribution. The method maximizes yield and produces a gamma globulin with greater than 99% purity. The resin columns used to obtain a high yield of IgG, retain IgM and IgA, respectively. IgA and IgM may be eluted in high yield and purity.
Abstract:
Purification of α-1 proteinase inhibitor (α-1 PI) from solutions comprising α-1 PI is accomplished using hydrophobic interaction chromatography (HIC). In some embodiments, purification of α-1 PI is accomplished by precipitation of contaminating proteins from a starting solution comprising α-1 PI, such as human plasma, followed by anion exchange resin chromatography prior to HIC. Further purification may be accomplished by an optional cation exchange chromatography subsequent to anion exchange chromatography but prior to HIC. Some embodiments of the invention also include virus removal and/or inactivation by methods such as nano filtration and such as contact with a non-ionic detergent. The methods of the present invention result in greater yield, purity, and pathogenic clearance of plasma fractions than known methods.