摘要:
Method for inhibiting scale deposits in an aqueous system. The method may include at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, wherein the aqueous system has a pH of at least about 9, and wherein a mean particle size of the anti-scalant is less than about 3 microns. The method may also include at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, and wherein the aqueous system has a pH of at least about 9; and adding dispersant to the aqueous system. The method may involve forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, and wherein a mean particle size of the anti-scalant is less than about 3 microns. The method may further include at least one of adding and forming anti-scalant in the aqueous system, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate; and adding at least one protein to the aqueous system. Compositions therefor.
摘要:
Method for inhibiting scale deposits in an aqueous system. The method may include adding anti-scalant to the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, and wherein the aqueous system has a pH of at least about 9. The method may include adding anti-scalant to the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, in the presence of up to about 0.4 ppm of cationic polymer. The method may include adding anti-scalant to the aqueous system at at least one of before a pulping digester and at a pulping digester, such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate. The method may involve adding a nucleation promoter/initiator to the aqueous system to inhibit formation of scale deposits, such that an amount of the nucleation promoter/initiator in the aqueous system is up to about 500 ppm. The method may involve adding first cations to the aqueous system and removing second cations which are distinct from the first cations from the aqueous system, to inhibit the second cations from forming scale deposits, wherein the aqueous system is at a temperature of about 70° C. to 500° C. Inorganic compositions therefor.
摘要:
A flotation method and apparatus for separating a selected constituent from an effluent of an industrial process is provided. The apparatus includes a conditioning tank and a flotation cell. The conditioning tank allows mixing a flotation reagent with an effluent and includes a mechanism for also dissolving gas in the effluent within the conditioning tank. The flotation cell includes a dissolved gas flotation chamber having an overflow for recovering the selected constituent and a tailings drain. In addition, the flotation cell also includes an added gas flotation chamber having a sparger for injecting gas into the effluent, an overflow for recovering the selected constituent and a tailings drain.