Abstract:
The present application proposes a method and apparatus for transfer learning-based localization of igneous carbonate-hosted rare earth mineralization. The technology relates to electromagnetic exploration and includes obtaining exploration data for electric, magnetic, seismic, and gravity methods in the target area. Transfer learning-based localization is applied to the electric, magnetic, seismic, and gravity exploration data to determine the cross-sectional map corresponding to the anomalous position of igneous carbonate-hosted rare earth mineralization in the target area. Feature decomposition dimensionality reduction, feature enhancement, and weighted fusion processing are applied to the cross-sectional map, followed by segmentation of the igneous carbonate-hosted rare earth mineralization geological body in the fused image to obtain the spatial distribution of the detection target. The integrated analysis of multi-source geophysical data using images improves the accuracy of identification and localization of igneous carbonate-hosted rare earth mineralization.
Abstract:
Disclosed in the present invention is a method for suppressing airborne transient electromagnetic in-band vibration noise, comprising: dividing the data after current turn-off into two segments according to whether the useful signal is attenuated to the system noise level: the segment A is the useful signal segment, and the segment B is the pure noise segment; limiting the bandwidth of the data of the segment B according to the frequency range of the in-band noise, and labeling the result as BL; training a neural network using the BL, utilizing the well trained neural network to predict the in-band vibration noise contained in the data of the segment A, and labeling the prediction result as PNA; and subtracting the PNA from the data of the segment A to suppress the in-band vibration noise contained in the data of the segment A.
Abstract:
A method and a system for processing downlink control information are disclosed, in which downlink control information for the subframe n may be transmitted in a subframe n or the downlink control information for the subframe n may be transmitted in a subframe n−1. By means of technology for processing control channel information provided by the disclosure, a region where the downlink control information is transmitted is added, and space division technology can be fully utilized, so that a load of a Physical Downlink Control Channel (PDCCH) is reduced, the interference between control channels is reduced, and the capacity of the control channel is enlarged.
Abstract:
A network device can implement functionality to intelligently re-transmit a broadcast message or a multicast message in a communication network to minimize duplicate retransmissions in the communication network. In response to receiving a message for forwarding in the communication network, the network device can determine whether the message includes a first indicator in a predefined field. The first indicator may indicate that a central coordinator of the communication network has previously forwarded the message. The network device can re-transmit the message to another network device connected in the downstream path, if the message includes the first indicator. The network device can re-transmit the message to the central coordinator or an upper-level proxy network device via an upstream path of the communication network, if the message does not include the first indicator.
Abstract:
A principal object of the present invention is to provide a pharmaceutical composition that can produce a high antitumor effect by efficiently delivering a drug with antitumor activity to tumor tissues with the aid of carbonate apatite nanoparticles. The present invention provides a pharmaceutical composition including carbonate apatite nanoparticles with an average particle size of at most 50 nm containing a drug with antitumor activity and a pharmacologically acceptable solvent in which the carbonate apatite nanoparticles containing the drug are dispersed.
Abstract:
The subject disclosure is directed towards a technology that automatically mitigates datacenter failures, instead of relying on human intervention to diagnose and repair the network. Via a mitigation pipeline, when a network failure is detected, a candidate set of components that are likely to be the cause of the failure is identified, with mitigation actions iteratively targeting each component to attempt to alleviate the problem. The impact to the network is estimated to ensure that the redundancy present in the network will be able to handle the mitigation action without adverse disruption to the network.
Abstract:
A backlight unit having buffer structures comprises a back cover, a light guide plate including an opening, and a buffer structure disposed in the back cover and the opening of the light guide plate is engaged with the buffer structure so as to connect the back cover with the light guide plate. In addition, a liquid crystal display device comprises the backlight unit and a liquid crystal panel adjacent to the backlight unit.
Abstract:
The present invention provides a method and device for detecting downlink control information, which relates to the communication field. The method includes: during cross carrier scheduling, the user equipment (UE) determines a search space for monitoring a physical downlink control channel (PDCCH) according to the number of downlink component carriers in a PDCCH Monitoring Set and the number of downlink component carriers in a UE DL Component Carrier Set.
Abstract:
The present invention provides a method for detecting a downlink control channel, a user equipment and a base station. The detection method comprises: a UE detecting a downlink control channel of the UE in a first search space and a second search space, the first search space and the second search space being resources for a base station to send downlink control channel information. In the present invention, the downlink control channel information is sent in two search spaces, thereby developing a new PDCCH resource, solving the problem of insufficient physical downlink control channel PDCCH resources due to the increased requirements for user access, and achieving the effect of increasing the system capacity and reducing the interference.
Abstract:
The subject disclosure is directed towards a technology that automatically mitigates datacenter failures, instead of relying on human intervention to diagnose and repair the network. Via a mitigation pipeline, when a network failure is detected, a candidate set of components that are likely to be the cause of the failure is identified, with mitigation actions iteratively targeting each component to attempt to alleviate the problem. The impact to the network is estimated to ensure that the redundancy present in the network will be able to handle the mitigation action without adverse disruption to the network.