Abstract:
A phase shift control method for a boost converter and circuit implementation comprises a master phase and at least one slave phase. A master-phase inductor current flowing through the master phase has a master-phase charge time interval and a master-phase discharge time interval; a slave-phase inductor current flowing through the slave phase has a slave-phase charge time interval and a slave-phase discharge time interval. The method comprises: calculating an ideal switching timing whereat the slave-phase inductor current descends to a zero-current judgment value; obtaining a physical switching timing whereat the slave-phase charge time interval starts; calculating a conduction timing error between the physical switching timing and the ideal switching timing; determining the time length of the slave-phase charge time interval in the same cycle according to the conduction timing error and the master-phase charge time interval.
Abstract:
A phase shift control method for a boost converter and circuit implementation comprises a master phase and at least one slave phase. A master-phase inductor current flowing through the master phase has a master-phase charge time interval and a master-phase discharge time interval; a slave-phase inductor current flowing through the slave phase has a slave-phase charge time interval and a slave-phase discharge time interval. The method comprises: calculating an ideal switching timing whereat the slave-phase inductor current descends to a zero-current judgment value; obtaining a physical switching timing whereat the slave-phase charge time interval starts; calculating a conduction timing error between the physical switching timing and the ideal switching timing; determining the time length of the slave-phase charge time interval in the same cycle according to the conduction timing error and the master-phase charge time interval.