摘要:
Provided is a thermal-assisted-magnetic-recording head capable of irradiating a magnetic recording medium with light with a spot size reduced on the submicron order with high utilization efficiency. A spot size converter 13 for guiding light emitted from an optical source 4 into a magnetic head is provided at a position adjacent to a magnetic main pole 19 in the magnetic head. In the spot size converter 13, a cover layer 15 having a lower refractive index than those of a core 14 and a clad material 24 is formed between the core 14 and the clad 15 and has a shape composed of a shape substantially rectangular in a light traveling direction and a taper shape having a width increasing toward the bottom surface of the magnetic head.
摘要:
In one embodiment, a magnetic recording head includes a spot size converter having a tapered portion, the tapered portion having at least one of a width and thickness that increases in a direction towards an air bearing surface; a waveguide surrounding the spot size converter, the waveguide having a refractive index that is lower than a refractive index of the spot size converter; and cladding adjacent the waveguide, the cladding having a refractive index that is lower than the refractive index of the waveguide. Additional systems and heads are also disclosed.
摘要:
Provided is a thermal-assisted-magnetic-recording head capable of directing, to a magnetic recording medium, light in which the spot size is reduced to submicron order with high total optical propagation efficiency. A light coupling unit that guides light emitted from the light source into a magnetic head and a high-refractive-index core that couples with the light guided by the light coupling unit to lead the light to an air bearing surface are arranged in the magnetic head. The light coupling unit includes a plurality of thin-film-like cores that are separated from each other by a clad material. An upper part of the high-refractive-index core is placed between two thin-film-like cores.
摘要:
A thermally assisted recording magnetic head is provided in which a magnetic recording medium can be irradiated with light having a spot size reduced in the submicron order with high total optical propagation efficiency. In a magnetic head, a spot size converter that propagates the light from an optical source in the magnetic head is provided adjacent to a main pole. The spot size converter includes a cover layer having a refractive index lower than that of a clad material and formed in contact with the optical waveguide core, and is formed in a shape composed of a substantially rectangular shape in a light traveling direction and a tapered shape where the width is increased toward the bottom surface of the magnetic head. The optical waveguide core having the cover layer formed is vertically interposed between multi-mode-thin-film-like cores that can excite a first or higher-order optical waveguide mode.
摘要:
The present invention aims to provide a chip applied to a molecular sensing device which carries out Raman spectroscopic analysis utilizing Raman scattering enhancement due to plasmons, and that achieves higher sensitivity and stability of its sensing sensitivity and miniaturization, and to provide a molecular sensing device including the chip. As the chip for Raman scattering enhancement applied to the molecular sensing device using the Raman spectroscopic analysis, which has an excitation light source for Raman scattering, a chip for Raman scattering enhancement and a photodetector for observing the Raman scattering, the present invention employs a chip having a molecular detecting element in which a transparent protection material thin film 32 composed of a dielectric material thin film or semiconducting material thin film is formed on a thin film 31 containing the noble metal oxide, and utilizes the Raman scattering enhancement by the thin film containing the noble metal oxide.
摘要:
Provided is a thermal-assisted-magnetic-recording head capable of irradiating a magnetic recording medium with light with a spot size reduced on the submicron order with high utilization efficiency. A spot size converter 13 for guiding light emitted from an optical source 4 into a magnetic head is provided at a position adjacent to a magnetic main pole 19 in the magnetic head. In the spot size converter 13, a cover layer 15 having a lower refractive index than those of a core 14 and a clad material 24 is formed between the core 14 and the clad 15 and has a shape composed of a shape substantially rectangular in a light traveling direction and a taper shape having a width increasing toward the bottom surface of the magnetic head.
摘要:
The present invention aims to provide a chip applied to a molecular sensing device which carries out Raman spectroscopic analysis utilizing Raman scattering enhancement due to plasmons, and that achieves higher sensitivity and stability of its sensing sensitivity and miniaturization, and to provide a molecular sensing device including the chip. As the chip for Raman scattering enhancement applied to the molecular sensing device using the Raman spectroscopic analysis, which has an excitation light source for Raman scattering, a chip for Raman scattering enhancement and a photodetector for observing the Raman scattering, the present invention employs a chip having a molecular detecting element in which a transparent protection material thin film 32 composed of a dielectric material thin film or semiconducting material thin film is formed on a thin film 31 containing the noble metal oxide, and utilizes the Raman scattering enhancement by the thin film containing the noble metal oxide.
摘要:
A thermally assisted recording magnetic head is provided in which a magnetic recording medium can be irradiated with light having a spot size reduced in the submicron order with high total optical propagation efficiency. In a magnetic head, a spot size converter that propagates the light from an optical source in the magnetic head is provided adjacent to a main pole. The spot size converter includes a cover layer having a refractive index lower than that of a clad material and formed in contact with the optical waveguide core, and is formed in a shape composed of a substantially rectangular shape in a light traveling direction and a tapered shape where the width is increased toward the bottom surface of the magnetic head. The optical waveguide core having the cover layer formed is vertically interposed between multi-mode-thin-film-like cores that can excite a first or higher-order optical waveguide mode.
摘要:
Provided is a thermal-assisted-magnetic-recording head capable of directing, to a magnetic recording medium, light in which the spot size is reduced to submicron order with high total optical propagation efficiency. A light coupling unit that guides light emitted from the light source into a magnetic head and a high-refractive-index core that couples with the light guided by the light coupling unit to lead the light to an air bearing surface are arranged in the magnetic head. The light coupling unit includes a plurality of thin-film-like cores that are separated from each other by a clad material. An upper part of the high-refractive-index core is placed between two thin-film-like cores.