摘要:
Methods for preparing rare earth doped monodisperse, hexagonal phase upconverting nanophosphors, the steps of which include: dissolving one or more rare earth precursor compounds and one or more host metal fluoride compounds in a solvent containing a tri-substituted phosphine or a tri-substituted phosphine oxide to form a solution; heating the solution to a temperature above about 250° C. at which the phosphine or phosphine oxide remains liquid and does not decompose; and precipitating and isolating from the solution phosphorescent hexagonal phase monodisperse nanoparticles of the host metal compound doped with rare earth elements. Nanoparticles according to the present invention, and methods for coating the nanoparticles with SiO2 are also disclosed.
摘要:
A method for producing activated substantially monodisperse, phosphorescent oxide particles with rare earth element dopants uniformly dispersed therein by mixing a rare earth element dopant precursor powder with an oxide-forming host metal powder to form a solid-phase precursor composition; vaporizing the solid-phase precursor composition; combining the vaporized precursor with an inert carrier gas; contacting the inert carrier gas and the vaporized precursor with a flame fueled by a reactive gas; and uniformly heating the vaporized precursor in the flame to a reaction temperature sufficient to form activated phosphorescent oxide nanoparticles.
摘要:
A process is provided for producing substantially monodisperse phosphorescent oxide nanoparticles with rare earth element dopants uniformly dispersed therein, in-which a soluble salt of one or more oxide-forming host metals and a soluble salt of one or more rare earth elements are dissolved in a polar solvent in which the rare earth element salts are soluble to form a precursor solution; droplets of the solution having a particle size less than about 20 microns are suspended in an inert carrier gas; the carrier gas with droplets suspended therein is contacted with a flame fueled by a reactive gas; and the suspended droplets are uniformly heated in the flame to a reaction temperature sufficient to form active radicals that accelerate the formation of activated phosphorescent oxide nanoparticles with uniform rare earth ion distribution. Rare earth doped monodisperse activated cubic phase phosphorescent oxide nano-particles are also disclosed.